PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Tailoring the mechanical properties of austempered low‑carbon ferritic-bainitic/martensitic dual‑phase steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A simple heat treatment of austenitization followed by austempering was proposed to obtain ferritic-bainitic/martensitic dual-phase (DP) microstructure with ~ 18% bainite and ~ 30% martensite in low-carbon steel, which provides a promising way for processing of low-cost high-performance advanced high-strength steels (AHSSs) with improved strength-ductility trade-off, tensile toughness, and fracture behavior. The processed bainite-aided DP steel exhibited high yield stress and high ultimate tensile strength while maintaining high total elongation to failure, which were beyond the expected trends for conventional steels, ferritic-martensitic DP steels, and ferritic-bainitic DP steels. The continuous yielding behavior (with the disappearance of the yield point phenomenon) and more ductile fracture surface appearance were also remarkable. Accordingly, besides grain refinement by cold rolling and intercritical annealing, the present work proposed an alternative way for processing high-performance DP steels.
Rocznik
Strony
art. no. e32, 2023
Opis fizyczny
Bibliogr. 42 poz., rys., wykr.
Twórcy
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155‑4563, Tehran, Iran
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155‑4563, Tehran, Iran
Bibliografia
  • 1. Kuziak R, Kawalla R, Waengler S. Advanced high strength steels for automotive industry. Archiv Civil Mechanical Eng. 2008;8:103-17.
  • 2. Radwanski K, Kuziak R, Rozmus R. Structure and mechanical properties of dual-phase steel following heat treatment simulations reproducing a continuous annealing line. Archiv Civil Mechanical Eng. 2019;19:453-68.
  • 3. Alibeyki M, Mirzadeh H, Najafi M, Kalhor A. Modification of rule of mixtures for estimation of the mechanical properties of dual-phase steel. J Mater Eng Perform. 2017;26:2683-8.
  • 4. Das D, Chattopadhyay PP. Influence of martensite morphology on the work-hardening behavior of high strength ferrite-martensite dual-phase steel. J Mater Sci. 2009;44:2957-65.
  • 5. Alibeyki M, Mirzadeh H, Najafi M. Fine-grained dual phase steel via intercritical annealing of cold-rolled martensite. Vacuum. 2018;155:147-52.
  • 6. Mazaheri Y, Jahanara AH, Sheikhi M, Ghatei Kalashami A. High strength-elongation balance in ultrafine grained ferrite-martensite dual phase steels developed by thermomechanical processing. Mater Sci Eng. 2019;761:138021.
  • 7. Deng Y, Di H, Misra RDK. On significance of initial microstructure in governing mechanical behavior and fracture of dual-phase steels. J Iron Steel Res Int. 2018;25:932-42.
  • 8. Ishikawa N, Yasuda K, Sueyoshi H, Endo S, Ikeda H, Morikawa T, Higashida K. Microscopic deformation and strain hardening analysis of ferrite-bainite dual-phase steels using micro-grid method. Acta Mater. 2015;97:257-68.
  • 9. Nawaz B, Yang Z, Zhang F, Li J. Effect of intercritical temperature on the strain hardening of dual-phase bainite/ferrite steel. Mater Sci Technol. 2020;36:1614-20.
  • 10. Cai M, Ding H, Lee YK, Tang Z, Zhang J. Effects of Si on microstructural evolution and mechanical properties of hot-rolled ferrite and bainite dual-phase steels. ISIJ Int. 2011;51:476-81.
  • 11. Zhao L, Qian L, Zhou Q, Li D, Wang T, Jia Z, Zhang F, Meng J. The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel. Mater Design. 2019;183: 108123.
  • 12. Apimonton C, Sungthong C, Luksanayam S, Suranuntchai S, Uthaisangsuk V. Effects of bainitic phase on mechanical properties of bainite-aided multiphase steels. Steel Res Int. 2017;88:1700004.
  • 13. Luo Q, Mei H, Kitchen M, Gao Y, Bowen L. Effect of short-term low-temperature austempering on the microstructure and abrasive wear of medium-carbon low-alloy steel. Metals Mater Int. 2021;27:3115-31.
  • 14. Mousalou H, Yazdani S, Avishan B, Parvini Ahmadi N, Chabok A, Pei Y. Microstructural and mechanical properties of low-carbon ultra-fine bainitic steel produced by multi-step austempering process. Mater Sci Eng. 2018;734:329-37.
  • 15. Karimi MM, Kheirandish Sh. Comparison of work hardening behaviour of ferritic-bainitic and ferritic-martensitic dual phase steels. Steel Res Int. 2009;80:160-4.
  • 16. Kalhor A, Mirzadeh H. Tailoring the microstructure and mechanical properties of dual phase steel based on the initial microstructure. Steel Res Int. 2017;88:1600385.
  • 17. Grajcar A, Zalecki W, Skrzypczyk P, Kilarski A, Kowalski A, Kołodziej S. Dilatometric study of phase transformations in advanced high-strength bainitic steel. J Therm Anal Calorim. 2014;118:739-48.
  • 18. Jamei F, Mirzadeh H, Zamani M. Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel. Mater Sci Eng. 2019;750:125-31.
  • 19. Ghaemifar S, Mirzadeh H. Refinement of banded structure via thermal cycling and its effects on mechanical properties of dual phase steel. Steel Res Int. 2018;89:1700531.
  • 20. Maleki M, Mirzadeh H, Zamani M. Effect of intercritical annealing on mechanical properties and work-hardening response of high formability dual phase steel. Steel Res Int. 2018;89:1700412.
  • 21. Thompson SW, Howell PR. Factors influencing ferrite/pearlite banding and origin of large pearlite nodules in a hypoeutectoid plate steel. Mater Sci Technol. 1992;8:777-84.
  • 22. Atreya V, Bos C, Santofimia MJ. Understanding ferrite deformation caused by austenite to martensite transformation in dual phase steels. Scripta Mater. 2021;202: 114032.
  • 23. Azizi-Alizamini H, Militzer M, Poole WJ. Formation of ultrafine grained dual phase steels through rapid heating. ISIJ Int. 2011;51:958-64.
  • 24. Zamani M, Mirzadeh H, Maleki M. Enhancement of mechanical properties of low carbon dual phase steel via natural aging. Mater Sci Eng A. 2018;734:178-83.
  • 25. Najafkhani F, Mirzadeh H, Zamani M. Effect of intercritical annealing conditions on grain growth kinetics of dual phase steel. Metals Mater Int. 2019;25:1039-46.
  • 26. Li J, Cao Y, Gao B, Li Y, Zhu Y. Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure. J Mater Sci. 2018;53:10442-56.
  • 27. Nasiri Z, Mirzadeh H. Spheroidization heat treatment and intercritical annealing of low carbon steel. J Mining Metall Section B Metall. 2019;55:405-11.
  • 28. Qu S, Zhang Y, Pang X, Gao K. Influence of temperature field on the microstructure of low carbon microalloyed ferrite-bainite dual-phase steel during heat treatment. Mater Sci Eng. 2012;536:136-42.
  • 29. Radwański K. Structural characterization of low-carbon multiphase steels merging advanced research methods with light optical microscopy. Archiv Civil Mechanical Eng. 2016;16:282-93.
  • 30. Radwański K, Wrożyna A, Kuziak R. Role of the advanced microstructures characterization in modeling of mechanical properties of AHSS steels. Mater Sci Eng. 2015;639:567-74.
  • 31. Kumar A, Singh SB, Ray KK. Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels. Mater Sci Eng. 2008;474:270-82.
  • 32. Kalhor A, Soleimani M, Mirzadeh H, Uthaisangsuk V. A review of recent progress in mechanical and corrosion properties of dual phase steels. Archiv Civil Mechanical Eng. 2020;20:85.
  • 33. Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: a review. Mater Sci Eng. 2020;795: 140023.
  • 34. Calcagnotto M, Ponge D, Demir E, Raabe D. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng. 2010;527:2738-46.
  • 35. Ghosh C, Haldar A, Ghosh P, Kumar Ray R. Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite-bainite dual phase steel. Int J Mater Res. 2010;101:1252-63.
  • 36. Kim IS, In Sup Reichel U, Dahl W. Effect of bainite on the mechanical properties of dual-phase steels. Steel Res. 1987;58(186):190.
  • 37. Zergani A, Mirzadeh H, Mahmudi R. Unraveling the effect of deformation temperature on the mechanical behavior and transformation-induced plasticity of the SUS304L stainless steel. Steel Res Int. 2020;91:2000114.
  • 38. Naghizadeh M, Mirzadeh H. Effects of grain size on mechanical properties and work-hardening behavior of AISI 304 austenitic stainless steel. Steel Res Int. 2019;90:1900153.
  • 39. Saeidi N, Ekrami A. Impact properties of tempered bainite-ferrite dual phase steels. Mater Sci Eng A. 2010;527:5575-81.
  • 40. Saha Podder A, Bhattacharjee D. Effect of martensite on the mechanical behavior of ferrite bainite dual phase steels. ISIJ Int. 2007;47(1058):1064.
  • 41. Sudo M, Iwai T. Deformation behavior and mechanical properties of ferrite-bainite-martensite (triphase) steel. Trans Iron Steel Instit Japan. 1983;23:294-302.
  • 42. Sugimoto K, Sakaki T, Kuribayashi T, Miyagawa O. Strength and ductility of ferrite-bainite-martensite steels. Tetsu-to-Hagane. 1986;72:2101-8.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-beb4b777-dbe3-4dd3-9c43-731075d18971
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.