PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plasticity and swell-shrink behaviour of electrokinetically stabilized virgin expansive soil using calcium hydroxide and calcium chloride solutions as cationic fluids

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Plastyczność i kurczenie się gleby w stabilizacji elektrokinetycznej z wykorzystaniem wodorotlenku wapnia i chlorku wapnia jako płynów kationowych
Języki publikacji
EN
Abstrakty
EN
This investigation focussed on the plasticity and swell-shrink behaviour of an expansive soil that was stabilized using electro kinetic stabilization (EKS) techniques with cationic fluids for enhancement of stabilization. 0.25 M solutions of calcium hydroxide and calcium chloride were used as cationic fluids. An electro kinetic (EK) cell of dimensions 500 mm x 150 mm x 160 mm with inert graphite electrodes of size 140 mm x 160 mm x 5 mm was adopted for the stabilization process, carried out at an applied voltage of 40 V over a period of 6 hours. After the duration of the test, stabilized soil sample was subjected to Atterberg limits and free swell tests to determine its plasticity and swell-shrink characteristics. The results of the investigation found that both fluids were capable of reducing the plasticity and swell-shrink behaviour of the soil with different levels of effectiveness.
PL
W badaniach skupiono się na plastyczności i kurczeniu się gleby, która została ustabilizowana za pomocą technik stabilizacji elektrokinetycznej (EKS) z płynami kationowymi. Jako płyny kationowe stosowano 0,25 M roztwory wodorotlenku wapnia i chlorku wapnia. Do procesu stabilizacji przyjęto ogniwo elektrokinetyczne (EK) o wymiarach 500 mm x 150 mm x 160 mm z obojętnymi elektrodami grafitowymi o wymiarach 140 mm x 160 mm x 5 mm, przy zastosowaniu napięcia 40 V przez okres 6 godzin. Po zakończeniu testu stabilizowaną próbkę gleby poddano testom Atterberga i badaniom swobodnego spęcznienia w celu określenia jego plastyczności i charakterystyki kurczenia się. Wyniki badania wykazały, że oba płyny były w stanie zmniejszyć plastyczność i kurczenie się gleby przy różnych poziomach skuteczności.
Rocznik
Strony
128--146
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr
Twórcy
autor
  • SSN College of Engineering, Chennai, India
  • Jerusalem College of Engineering, Chennai, India
autor
  • Jerusalem College of Engineering, Chennai, India
  • Jerusalem College of Engineering, Chennai, India
  • Jerusalem College of Engineering, Chennai, India
Bibliografia
  • [1] Jones, CJFP, Lamont-Black, J. and Glendinning S. 2011. Electrokinetic geosynthetics in hydraulic applications. Geotext. Geomembranes 29, 381–390.
  • [2] Wall, S. 2010. The history of electrokinetic phenomena. Curr. Opin. Colloid Interface Sci. 15, 119–124.
  • [3] Abdullah, WS and Al-Abadi, AM, 2010. Cationic–electrokinetic improvement of an expansive soil. Appl. Clay Sci. 47, 343–350.
  • [4] Acar, BYB, Li, H. and Gale, RJ, 1992. Phenol removal from kaolinite by electrokinetics. J. Geotech. Eng. 118, 1837–1852.
  • [5] Cameselle, C and Gouveia, S., 2013. Advances in Electrokinetic Remediation for the Removal of Organic Contaminants in Soils. In: Rashed, MN (Ed.) Organic Pollutants - Monitoring, Risk and Treatment. InTech Open, 209–229.
  • [6] Jiang, H, Wang, B, Inyang, HI, Liu, J, Gu, K and Shi, B., 2013. Role of expansive soil and topography on slope failure and its countermeasures, Yun County, China. Eng. Geol. 152, 155–161.
  • [7] Yuan, C, Hung, C-H and Chen, K-C., 2009. Electrokinetic remediation of arsenate spiked soil assisted by CNT-Co barrier-the effect of barrier position and processing fluid. J. Hazard. Mater. 171, 563–570.
  • [8] Ouhadi, VR, Yong, RN, Shariatmadari, N, Saeidijam, S, a Goodarzi, R and Safari-Zanjani, M., 2010. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method. J. Hazard. Mater. 173, 87–94.
  • [9] Cameselle, C, a Chirakkara, R and Reddy, KR, 2013. Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere 93, 626–636.
  • [10] Ren, L, Lu, H, He, L and Zhang, Y. 2014. Enhanced electrokinetic technologies with oxidization–reduction for organically-contaminated soil remediation. Chem. Eng. J. 247, 111–124.
  • [11] Karim, MA 2014. Electrokinetics and soil decontamination: concepts and overview. J. Electrochem. Sci. Eng. 4, 297–313.
  • [12] Mosavat, N, Oh, E and Chai, G 2012. A. Review of Electrokinetic Treatment Technique for Improving the Engineering Characteristics of Low Permeable Problematic Soils. Int. J. Geomate 2, 266–272.
  • [13] Azhar, ATS, Azim, MAM, Syakeera, NN, Jefferson, IF and Rogers, CDF, 2017. Application of Electrokinetic Stabilisation (EKS) Method for Soft Soil: A Review. IOP Conf. Ser. Mater. Sci. Eng. 226.
  • [14] Ou, C., Chien, S. and Wang, Y. 2009. On the enhancement of electroosmotic soil improvement by the injection of saline solutions. Appl. Clay Sci. 44, 130–136.
  • [15] Ozkan, S, Gale, RJ and Seals, RK 1999. Electrokinetic stabilization of kaolinite by injection of Al and PO43- ions. Gr. Improv. 3, 135–144.
  • [16] Alshawabkeh, AN and Sheahan, TC 2003. Soft soil stabilisation by ionic injection under electric fields. Gr. Improv. 7, 177–185.
  • [17] Otsuki, N, Yodsudjai, W and Nishida, T., 2007. Feasibility study on soil improvement using electrochemical technique. Constr. Build. Mater. 21, 1046–1051.
  • [18] Chien, S, Ou, C and Wang, Y. 2011. Soil improvement using electroosmosis with the injection of chemical solutions: laboratory tests. J. Chinese Inst. Eng. 34, 863–875.
  • [19] Ranjitha, K and Blessing, BVM, 2017. Soil Stabilization by Electrokinetic Method. Int. J. Sci. Res. 6, 1316–1320.
  • [20] Moayedi, H, Asad, A, Moayedi, F, Huat, BBK and Chea, LW, 2011. Optimizing stabilizers enhanced electrokinetic environment to improve physicochemical properties of highly organic soil. Int. J. Electrochem. Sci. 6, 1277–1293.
  • [21] Azhar, ATS. et al. 2018. The Physical Behavior of Stabilised Soft Clay by Electrokinetic Stabilisation Technology. J. Phys. Conf. Ser. 995, 1–10.
  • [22] Mohamedelhassan, E and Shang, JQ, 2003. Electrokinetics-generated pore fluid and ionic transport in an offshore calcareous soil. Can. Geotech. J. 40,1185–1199.
  • [23] Chien, S, Ou, C and Lee, Y. 2010. A novel electroosmotic chemical treatment technique for soil improvement. Appl. Clay Sci. 50, 481–492.
  • [24] BIS, IS 2720 Methods of Test for Soils Part 3: Determination of Specific Gravity/Section 1 Fine Grained Soils. India 1980, 1–8.
  • [25] BIS, IS 2720 Methods of Test for Soils: Part 5 Determination of Liquid and Plastic Limit. India 1985, 1–16.
  • [26] BIS, IS 2720 Methods of Test for Soils: Part 6 Determination of Shrinkage Factors. India 1972, 1–12.
  • [27] BIS, IS 2720 Methods of Test for Soils: Part 40 Determination of Free Swell Index of Soils. India 1977, 1–5.
  • [28] BIS, IS 2720 Methods of Test for Soils: Part 7 Determination of Water Content-Dry Density Relation Using Light Compaction. India 1980, 1–9.
  • [29] BIS, IS 1498 Classification and Identification of Soils for General Engineering Purposes. India 1970, 4–24.
  • [30] Little, DN 1995. Handbook for Stabilization of Pavement Subgrades and Base Courses with Lime. Austin: Texas.
  • [31] Prasad, ASSV, Prasad, DSV and Babu, RD, 2015. Efficiency of Calcium Chloride and Vitrified Tiles Sludge on the Strength Characteristics of Expansive Soil. Int. J. Adv. Res. Educ. Technol. 2, 202–205.
  • [32] Bhuvaneswari, S, Thyagaraj, T, Robinson, RG and Gandhi, SR, 2010. Alternative Technique to Induce Faster Lime Stabilization Reaction in Deeper Expansive Strata. Proceedings of Indian Geotechnical Conference GEOtrendz, Mumbai, India, December, 16–18, 609–612.
  • [33] Sivapullaiah, PV and Jha, AK, 2014. Gypsum Induced Strength Behaviour of Fly Ash-Lime Stabilized Expansive Soil. Geotech. Geol. Eng. 32, 1261–1273.
  • [34] James, J and Pandian, PK, 2016. Plasticity, Swell-Shrink and Microstructure of Phosphogypsum Admixed Lime Stabilized Expansive Soil. Adv. Civ. Eng. Article ID 9798456, 1–10.
  • [35] Page, MM and Page, CL, 2002. Electroremediation of Contaminated Soils. J. Environ. Eng.128, 208–219.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-beb1176a-3318-4197-b133-61486aec7153
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.