PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temporal and spatial variability of the fidgety movement descriptors and their relation to head position in automized general movement assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In clinical practice, motor development in infants is assessed subjectively. Many researchers propose objective methods, which have numerous limitations, by attaching markers or sensors to the child’s limbs. The purpose of this study is to attempt to develop objectified numerical indices to describe the limb movements of infants without interfering with spontaneous activity. Methods: 20-minute video recordings of three infants’ movements who were purposively selected from 51 subjects were included in the study. The procedure of automatic calculation of head position time in 3 positions was applied. Movement features were determined to allow for the delineation of coefficients describing the movement in numerical values. Results: Presented parameters describe three infant’s movement aspects: quality (strength), distribution of postural tonus and asymmetry in relation to head position, described as four independent values. Estimated parameters variability over time was weighted up according to expert observations. The presented method is a direct reflection of infants' observation, currently performed by highly educated and experienced therapists. Conclusions: The interpretability and usefulness of the presented parameters were proved. All parameters estimation is fully automated. The conducted research is a prelude to future work related to creating an objective and repeatable tool, initially monitoring and ultimately supporting early diagnosis for differentiating normal and abnormal motor development.
Rocznik
Strony
69--78
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Institute of Physiotherapy and Health Science, Academy of Physical Education in Katowice, Katowice, Poland
  • Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Institute of Physiotherapy and Health Science, Academy of Physical Education in Katowice, Katowice, Poland
  • Institute of Physiotherapy and Health Science, Academy of Physical Education in Katowice, Katowice, Poland
  • Institute of Physiotherapy and Health Science, Academy of Physical Education in Katowice, Katowice, Poland
  • Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Institute of Physiotherapy and Health Science, Academy of Physical Education in Katowice, Katowice, Poland
Bibliografia
  • [1] BERTHOUZE L., MARGARET M., Design and validation of surface-marker clusters for the quantification of joint rotations in general movements in early infancy, J. Biomech., 2011, 44 (6), DOI: 10.1016/j.jbiomech.2011.01.016.
  • [2] CAO Z., HIDALGO G., SIMON T., WEI S., SHEIKH Y., OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields, IEEE Trans. Pattern Anal. Mach. Intell., 2021, 43 (1), DOI: 10.1109/tpami.2019.2929257.
  • [3] CHEN H., XUE M., MEI Z., BAMBANG OETOMO S., CHEN W., A review of wearable sensor systems for monitoring body movements of neonates, Sensors, 2016, 16 (12), 2134, DOI: 10.3390/s16122134.
  • [4] COLYER S.L., EVANS M., COSKER D.P., SALO A.I.T., A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system, Sports Medicine – Open, 2018, 4 (1), DOI: 10.1186/s40798-018-0139-y.
  • [5] DORONIEWICZ I., LEDWOŃ D., AFFANASOWICZ A., KIESZCZYŃSKA K., LATOS D., MATYJA M., MITAS A.W., MYŚLIWIEC A., Writhing Movement Detection in Newborns on the Second and Third Day of Life Using Pose-Based Feature Machine Learning Classification, Sensors, 2020, 20 (21), 5986, DOI: 10.3390/s20215986.
  • [6] DORONIEWICZ I., LEDWOŃ D., BUGDOL M., KIESZCZYŃSKA K., AFFANASOWICZ A., MATYJA M., BADURA D., MITAS A.W., MYŚLIWIEC A., Computer-based analysis of spontaneous infant activity: A pilot study, Information Technology in Biomedicine, 2020, DOI: 10.1007/978-3-030-49666-1_12.
  • [7] DUBOWITZ L., RICCI D., MERCURI E., The Dubowitz neurological examination of the full-term newborn, Ment. Retard. Dev. Disabil. Res. Rev., 2005, 11 (1), DOI: 10.1002/mrdd.20048.
  • [8] EINSPIELER C., PEHARZ R., MARSCHIK P.B., Fidgety movements – tiny in appearance, but huge in impact, J. Pediatr. (Rio J.), 2016, 92 (3), DOI: 10.1016/j.jpedp.2016.03.016.
  • [9] EINSPIELER C., PRECHTL H.F.R., Prechtl’s assessment of general movements: a diagnostic tool for the functional assessment of the young nervous system, Ment. Retard. Dev. Disabil. Res. Rev., 2005, 11 (1), DOI: 10.1002/mrdd.20051.
  • [10] GAJEWSKA E., SOBIESKA M., SAMBORSKI W., Correlates between Munich Functional Development Diagnostics and postural reactivity findings based on seven provovoked postural reactions modus Vojta during the first period of child’s life, Ann. Acad. Med. Stetin., 2006, 52 (3), 67–70.
  • [11] GILSON K.M., DAVIS E., REDDIHOUGH D., GRAHAM K., WATERS E., Quality of life in children with cerebral palsy: implications for practice, J. Child Neurol., 2014, 29 (8), DOI: 10.1177/0883073814535502.
  • [12] GROEN S.E., DE BLÉCOURT A.C., POSTEMA K., HADDERS--ALGRA M., General movements in early infancy predict neuromotor development at 9 to 12 years of age, Dev. Med. Child Neurol., 2005, 47 (11), DOI: 10.1017/s0012162205001544.
  • [13] GROOS D., ADDE L., STØEN R., RAMAMPIARO H., IHLEN E.A.F., Towards human performance on automatic motion tracking of infant spontaneous movements, arXiv., 2020, ArXiv:2010.05949 [Cs].
  • [14] HADDERS-ALGRA M., Evaluation of motor function in young infants by means of the assessment of general movements: a review, Pediatr. Phys. Ther., 2001, 13 (1), DOI:10.1097/00001577200104000-00005.
  • [15] HARRIS S.R., BACKMAN C.L., MAYSON T.A., Comparative predictive validity of the Harris Infant Neuromotor Test and the Alberta Infant Motor Scale, Dev. Med. Child Neurol., 2010, 52 (5), DOI: 10.1111/j.1469-8749.2009.03518.x.
  • [16] IHLEN E.A.F., STØEN R., BOSWELL L., DE REGNIER R.-A., FJØRTOFT T., GAEBLER-SPIRA D., LABORI C., LOENNECKEN M.C., MSALL M.E., MÖINICHEN U.I., PEYTON C., SCHREIBER M.D., SILBERG I.E., SONGSTAD N.T., VÅGEN R.T., ØBERG G.K., ADDE L., Machine Learning of Infant Spontaneous Movements for the Early Prediction of Cerebral Palsy: A MultiSite Cohort Study, J. Clin. Med., 2020, 9 (1), DOI: 10.3390/ jcm9010005.
  • [17] IRSHAD M.T., NISAR M.A., GOUVERNEUR P., RAPP M., GRZEGORZEK M., AI Approaches towards Prechtl’s Assessment of General Movements: A Systematic Literature Review, Sensors, 2020, 20 (18), 5321, DOI: 10.3390/ s20185321.
  • [18] JOHANSEN K., PERSSON K., SONNANDER K., MAGNUSSON M., SARADI A., LUCAS S., Clinical utility of the Structured Observation of Motor Performance in Infants within the child health services, PLoS One, 2017, 12 (7), e0181398, DOI: 10.1371/journal.pone.0181398.
  • [19] KANEMARU N., WATANABE H., KIHARA H., NAKANO H., NAKAMURA T., NAKANO J., TAGA G., KONISHI Y., Jerky spontaneous movements at term age in preterm infants who later developed cerebral palsy, Early Hum. Dev., 2014, 90 (8), DOI: 10.1016/j.earlhumdev.2014.05.004.
  • [20] MARCHI V., HAKALA A., KNIGHT A., D’ACUNTO F., SCATTONI M.L., GUZZETTA A., VANHATALO S., Automated pose estimation captures key aspects of General Movements at eight to 17 weeks from conventional videos, Acta Paediatr., 2019, 108 (10), DOI: 10.1111/apa.14781.
  • [21] MARING J.R., ELBAUM L., Concurrent Validity of the Early Intervention Developmental Profile and the Peabody Developmental Motor Scale-2, Pediatr. Phys. Ther., 2007, 19 (2), DOI: 10.1097/pep.0b013e31804a5786.
  • [22] MCCAY K.D., HO E.S.L., SHUM H.P.H., FEHRINGER G., MARCROFT C., EMBLETON N.D., Abnormal Infant Movements Classification With Deep Learning on Pose-Based Features, IEEE Access, 2020, 8, DOI: 10.1109/access.2020.2980269.
  • [23] MONTGOMERY C., HELLSTRÖM-WESTAS L., STRAND-BRODD K., SONNANDER K., PERSSON K., The Structured Observation of Motor Performance in Infants has convergent and discriminant validity in preterm and term infants, Acta Paediatr., 2017, 106 (5), DOI: 10.1111/apa.13774.
  • [24] NUYSINK J., VAN HAASTERT I.C., EIJSERMANS M.J., KOOPMAN-ESSEBOOM C., HELDERS P.J., DE VRIES L.S., VAN DER NET J., Prediction of gross motor development and independent walking in infants born very preterm using the Test of Infant Motor Performance and the Alberta Infant Motor Scale, Early Hum. Dev., 2013, 89 (9), DOI: 10.1016/ j.earlhumdev.2013.04.016.
  • [25] PIPER M.C., PINNELL L.E., DARRAH J., MAGUIRE T., BYRNE P.J., Construction and validation of the Alberta Infant Motor Scale (AIMS), Can. J. Public Health., 1992, 83, S46–50.
  • [26] PRECHTL H.F., General movement assessment as a method of developmental neurology: new paradigms and their consequences: the 1999 Ronnie MacKeith lecture, Dev. Med. Child Neurol., 2001, 43 (12), DOI: 10.1017/s0012162201001529.
  • [27] PRECHTL H.F., EINSPIELER C., CIONI G., BOS A.F., FERRARI F., SONTHEIMER D., An early marker for neurological deficits after perinatal brain lesions, Lancet, 1997, 349 (9062), DOI: 10.1016/s0140-6736(96)10182-3.
  • [28] RAHMATI H., MARTENS H., AAMO O.M., STAVDAHL O., STOEN R., ADDE L., Frequency analysis and feature reduction method for prediction of cerebral palsy in young infants, IEEE Trans. Neural. Syst. Rehabil. Eng., 2016, 24 (11), DOI: 10.1109/tnsre.2016.2539390.
  • [29] ROSE-JACOBS R., CABRAL H., BEEGHLY M., BROWN E.R., FRANK D.A., The Movement Assessment of Infants (MAI) as a predictor of two-year neurodevelopmental outcome for infants born at term who are at social risk, Pediatr. Phys. Ther., 2004, 16 (4), DOI: 10.1097/01.pep.0000145931.87152.co.
  • [30] SAVITZKY A., GOLAY M.J.E., Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem., 1964, 36 (8), DOI: 10.1021/ac60214a047.
  • [31] SILVA N., ZHANG D., KULVICIUS T., GAIL A., BARREIROS C., LINDSTAEDT S., KRAFT M., BÖLTE S., POUTSKAR L., NIELSEN--SAINES K., WÖRGÖTTER F., EINSPIELER C., MARSCHIK P.B., The future of General Movement Assessment: The role of computer vision and machine learning – A scoping review, Res. Dev. Disabil., 2021, 110, 103854, DOI: 10.1016/j.ridd.2021.103854.
  • [32] STAHL A., SCHELLEWALD C., STAVDAHL Ø., AAMO O.M., ADDE L., KIRKERØD H., An optical flow-based method to predict infantile cerebral palsy, IEEE Trans. Neural. Syst. Rehabil. Eng., 2012, 20 (4), DOI: 10.1109/tnsre.2012.2195030.
  • [33] SZCZYGIEŁ E., PIOTROWSKI K., GOLEC J., CZECHOWSKA D., MASŁOŃ A., BAC A., GOLEC E., Head position influence on stabilographic variables, Acta Bioeng. Biomech., 2016, 18 (4), DOI: 10.5277/ABB-00433-2015-02.
  • [34] TSUJI T., NAKASHIMA S., HAYASHI H., SOH Z., FURUI A., SHIBANOKI T., SHIMA K., SHIMATANI K., Markerless Measurement and evaluation of General Movements in infants, Sci. Rep., 2020, 10 (1), DOI: 10.1038/s41598-020-57580-z.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-beaca95a-464a-4688-83de-ce27684d2954
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.