PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Perspectives from literature on the influence of inorganic electrolytes present in plant water on flotation performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interaction of inorganic electrolytes with reagents in the flotation of sulphidic PGM bearing ores is not well explored. It has been shown that specific inorganic electrolytes such as Ca2+ and SO42- can affect the wettability of gangue minerals. These could also hinder the adsorption of collectors onto valuable minerals and concurrently enhance or retard froth stability. This presents a challenge as regards understanding what the overarching or controlling mechanisms of interaction between electrolytes, reagents and minerals are as well as predicting how flotation performance will be affected. This review shows that studies in literature have simplified the question of electrolyte-reagent-mineral interactions and that current approaches have not provided fundamental solutions to the challenge of water quality. It is proposed that the complexity of the flotation system requires an in-depth knowledge of the individual electrolyte-reagent-mineral interactions so as to establish whether there are any dominant or synergistic interactions. Such in-depth knowledge should enable the development of pulp chemistry control measures against water quality variations in flotation.
Rocznik
Strony
1191--1214
Opis fizyczny
Bibliogr. 132 poz., rys., tab.
Twórcy
autor
  • Centre for Minerals Research, University of Cape Town
autor
  • Centre for Minerals Research, University of Cape Town
autor
  • Centre for Minerals Research, University of Cape Town
Bibliografia
  • AKTAS, Z., CILLIERS, J.J., BANFORD, A.W., 2008. Dynamic froth stability: particle size, airflow rate and conditioning time effects. Int. J. Miner. Process. 65–71.
  • ALLISON, S.A., O’CONNOR, C.T., 2011. An investigation into the flotation behaviour of pyrrhotite. Miner. Eng. 98 (34), 202–207.
  • ANSARI, A., PAWLIK, M., 2007. Floatability of chalcopyrite and molybdenite in the presence of lignosulfonates. Part ɪɪ. Halimond tube flotation. Miner. Eng. 609–619.
  • ARNOLD, B.J., APLAN, F.F., 1986. The effect of clay slimes on coal flotation, Part II: the role of water quality. Int. J. Miner. Process. 17, 243–260.
  • ATA, S., 2012. Phenomena in the froth phase of flotation-a review. Int. J. Miner. Process. 1–12.
  • BALL, B., RICKARD, R.S., 1976. The chemistry of pyrite flotation and depression. . American Institute of Mining, Metallurgical and Petroleum Engineers, New York.
  • BANDINI, P., PRESTIDGE, C.A., RALSTON, J., 2001. Colloidal iron oxide slime coatings and galena particle flotation. Miner. Eng. 487–497.
  • BARKER, L.M., 1986. The Effect of Electrolytes on the Flotation of Pyrite. University of Cape Town.
  • BIKERMAN, S., 1953. Foams: Theory and Industrial Applications., in: Bikerman, S. (Ed.), The Theory of Foaming. Reinhold Publishing Corperation, New York, NY, USA, pp. 158–170.
  • BIÇAK, Ö., EKMEKÇI, Z., CAN, M, ÖZTÜRK, Y., 2012. The effect of water chemistry on froth stability and surface chemistry of the flotation of a Cu-Zn sulfide ore. Int. J. Miner. Process. 32–37.
  • BOUJOUNOUI, K., ABIDII, A., BACAOUI, A., AMARII, K. EL, YAACOUBI, A., 2015. The influence of water quality on the flotation performance of complex sulphide ore: Case study at Hajar Mine, Morocco. J. South African Inst. Min. Metall. 115, 1243–1251.
  • BOURNIVAL, G., PUGH, R.J., ATA, S., 2012. Examination of NaCl and MIBC as bubble coalescence inhibitor in relation to froth flotation. Miner. Eng. 47–53.
  • BRADSHAW, D.J., OOSTENDORP, B., O’CONNOR, C.T., 2004. Development of methodologies to improve the assessment of reagent behaviour in flotation with particular reference to collectors and depressants. Miner. Eng. 189–194.
  • BRUCKARD, W.J., SPARROW, G.J., WOODCOCK, J.T., 2011. A review of the effects of the grinding environment on the flotation of copper sulphides. Int. J. Miner. Process. 100, 1–13.
  • BUCKLEY, A.N., HAMILTON, I.C., WOODS, R., FORSSBERG, K.S.E., 1985. Investigation of the surface oxidation of sulfide minerals, in: Flotation of Sulfide Minerals. Elsevier, Amsterdam, pp. 41–60.
  • BULATOVIC, S.M., 2007. Handbook of flotation reagents, chemistry, theory and practice: flotation of sulphide ores. Elsevier Science & Technology Books.
  • BULUT, G., YENIAL, Ü., 2016. Effects of major ions in recycled water on sulfide minerals flotation. Miner. Metall. Process. 33, 137–143. doi:10.19150/mmp.6750.
  • BURDUKOVA, E., 2007. Surface properties of New York Talc as a function of pH, polymer adsorption and electrolyte concentration.
  • BURDUKOVA, E., VAN LEERDAM, G.C., PRINS, F.E., SMEINK, R.G., BRADSHAW, D.J., LASKOWSKI, J.S., 2008. Effect of calcium ions on the adsorption of CMC onto the basal planes of New York talc – A ToF-SIMS study. Miner. Eng. 1020–2025.
  • CARLSON, L., BIGHAM, J.M., SCHWERTMANN, U., KYEK, A., WAGNER, F., 2002. Scavenging of As from acid mine drainage by Schwertmannite and Ferrihydrite: a comparison with synthetic analogs. Environ. Sci. Technol. 36, 1712–1719.
  • CASTRO, S., MIRANDA, C., TOLEDO, P., LASKOWSKI, J.S., 2013. Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater. Int. J. Miner. Process. 8–14.
  • CASTRO, S., MIRANDA, C., TOLEDO, P., LASKOWSKI, J.S., 2013. Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater. Int. J. Miner. Process. 124, 8–14. doi:10.1016/j.minpro.2013.07.002.
  • CHANDER, S., FUERSTENAU, D.W., 1985. An XPS study of the flouride uptake by hydroxyapatite. Colloids and Surfaces 13, 137–144. doi:10.1016/0166-6622(85)80012-3.
  • CHANDER, S., FUERSTENAU, D.W., 1983. Electrochemical flotation separation of chalcocite from molybdenite. Int. J. Miner. Process. 10, 89–94.
  • CORIN, K.C., REDDY, A., MIYEN, L., WIESE, J.G., HARRIS, P.J., 2011. The effect of ionic strength of plant water on valuable mineral and gangue recovery in a platinum bearing ore from the Merensky reef. Miner. Eng. 24, 131–137. doi:10.1016/j.mineng.2010.10.015.
  • CORIN, K.C., WIESE, J.G., 2014. Investigating froth stability: A comparative study of ionic strength and frother dosage. Miner. Eng. 66, 130–134. doi:10.1016/j.mineng.2014.03.001.
  • CRAIG, V.S.J., NINHAM, B.W., PASHLEY, R.M., 1993. The effect of electrolytes on bubble coalescence in water. J. Phys. Chem. 97, 10192–10197. doi:10.1021/j100141a047.
  • CROZIER, R.D., 1992. Flotation: Theory, reagents and ore testing. Pergamon Press.
  • DENG, M., LIU, Q., XU, Z., 2004. Impact of Total Dissolved Solids in Process Water on the Surface Properties of Silica and Sphalerite Minerals.
  • DENG, M., XU, Z., LIU, Q., 2014. Impact of gypsum supersaturated process water on the interactions between silica and zinc sulphide minerals. Miner. Eng. 55, 172–180. doi:10.1016/j.mineng.2013.09.017.
  • DISHON, M., ZOHAR, O., SIVAN, U., 2009. From repulsion to attraction and back to repulsion: the effect of NaCl, KCl and CsCl on the force between silica surfaces in aqueous solution. Langmuir 25 (5), 2831–2836.
  • DRZYMALA, J., 2007. Mineral Processing: Foundation of theory and practice of Mineralogy. Wroclaw University of Technology.
  • ESPINOSA-GOMEZ, R., FINCH, J.A., LAPLANTE, A.R., 1987. Effects of the type of water on the selective flotation of pyrochlore from niobec. Colloids and Surfaces 26, 333–350.
  • EVDOKIMOVA, G.A., GERSHENKOP, A.S., FOKINA, N. V, 2012. The impact of bacteria of circulating water on apatitenepheline ore flotation. ,. J. Environ. Sci. Heal. Part A 47, 398–404.
  • FARROKHPAY, S., ZANIN, M., 2012. An investigation into the effect of water quality on froth stability. Adv. Powder Technol. 23, 493–497. doi:10.1016/j.apt.2012.04.012.
  • FINCH, J.A., NESSET, J.E., ACUÑA, C., 2008. Role of frother on bubble production and behaviour in flotation. Miner. Eng. 21, 949–957. doi:10.1016/j.mineng.2008.04.006.
  • FONT, R., GARCIA, P., RODRIGUEZ, M., 1999. Sedimentation test of metal hydroxides: hydrodynamics and influence of pH. Colloids Surfaces A Physicochem. Eng. Asp. 157, 73–84.
  • FORSSBERG, K.S.E., HALLIN, M.I., 1988. Process Water Reticulation in a Lead-Zinc Plant and other Sulphide Flotation Plants, in: Sastry K V S, Fuerstenau, M.C. (Eds.), In Proc, Symp. Challenges in Mineral Processing. Society of Mining Engineers.
  • FROST, R.L., MARTENS, W.N., RINTOUL, L., MAHMUTAGIC, E., KLOPROGGE, J.T., 2002. Raman spectroscopic study of azurite and malachite at 298 and 77 K. J. Raman Spectrosc. 33, 252–259.
  • FUERSTENAU, C MAURICE; MILLER, D JAN; KUHN, C.M., 1985. Chemistry of Flotation. Soc of Mining Engineers of AIME, New York, NY, USA.
  • FUERSTENAU, D W; MISHRA, R.K., 1980. On the mechanism of pyrite flotation with xanthate collectors, in: Jones, M.J. (Ed.), Complex Sulphide Ores. I.M.M, London, pp. 271–277.
  • FUERSTENAU, M C; LOPEZ-VALDIVIESO, A; FUERSTENAU, D.W., 1988a. Role of hydrolyzed cations in the natural hydrophobicity of talc. Int. J. Miner. Process. 23, 161–170.
  • FUERSTENAU, M.C., 1982. Sulphide Mineral Flotation, in: King, R.P. (Ed.), Principles of Flotation. SAIMM, Johannesburg, SA, pp. 159–182.
  • FUERSTENAU, M.C., JAMESON, G., YOON, R.-H., 2007. Froth Flotation: A Century of Innovation. Society of Mining, Metallurgy, and Exploration, Inc.
  • GAUDIN, A; CHARLES, W.D., 1953. Adsorption of calcium and sodium on pyrite. Trans. AIME – Min. Eng. 195–196.
  • GAUDIN, A.M., 1932. Flotation, 1st ed. McGraw-Hill Book Company, New York, NY, USA.
  • GLEMBOTSKII, V A; KLASSEN, V I; PLAKSIN, I.N., 1972. Flotation. Primary Sources, N.Y.
  • GOODALL, C.M., 1992. The effects of flotation variables on the bubble size, mixing characteristics and froth behaviour in column flotation cells. University of Cape Town.
  • GRANO, S.R., CNOSSEN, H., SKINNER, W., PRESTIDGE, C.A., RALSTON, J., 1997. Surface modifications in the chalcopyrite-sulphite ion system, II. Dithiophosphate collector adsorption study. Int. J. Miner. Process. 50, 27–45.
  • GRAU, R.A., LASKOWSKI, J.S., HEISKANEN, K., 2005. Effect of frothers on bubble size. Int. J. Miner. Process. 76 (4), 225–233.
  • GUSH, J.D.C., 2005. Flotation of oxide minerals by sulphidization - the development of a sulphidization control system for laboratory testwork. J. South African Inst. Min. Metall. 105, 193–198.
  • HANCER, M., CELIK, M.S., MILLER, J.D., 2001. The Significance of Interfacial Water Structure in Soluble Salt Flotation Systems. J. Colloid Interface Sci. 235, 150–161. doi:10.1006/jcis.2000.7350.
  • HE, M., BEATTIE, D.A., ADDAI-MENSAH, J., 2011. Influence of solution conditions and polymer chemistry on the adsorption behaviour of anionic dispersants onto chalcocite in aqueous media. Chem. Eng. J. 171, 104–112. doi:https://doi.org/10.1016/j.cej.2011.03.070.
  • HENRY, C.L., CRAIG, V.S.J., 2010. The link between ion specific bubble coalescence and Hofmeister effects is the partitioning of ions within the interface. Langmuir 26, 6478–6483. doi:10.1021/la9039495.
  • HENRY, C.L., DALTON, C.N., SCRUTON, L., CRAIG, V.S.J., 2007. Ion-specific coalescence of bubbles in mixed electrolyte solutions. J. Phys. Chem. C 111, 1015–1023. doi:10.1021/jp066400b.
  • IKUMAPAYI, F., MAKITALO, M., JOHANSSON, B., RAO, K.H., 2012. Recycling of process water in sulphide flotation: Effect of calcium and sulphate ions on flotation of galena. Miner. Eng. 39, 77–88. doi:10.1016/j.mineng.2012.07.016.
  • IWASAKI, I; SMITH, K A; LIPP, R J; SATO, H., 1980. Effect of calcium and magnesium ions on selective desliming and cationic flotation of quartz from iron ores, in: Somasundaran, P. (Ed.), Fine Particle Processing. AIME, New York, NY, USA, pp. 1057–1082.
  • JOHNSON, N.W., 2003. Issues in Maximisation of Recycling of Water in a Mineral Processing Plant. Aust. Inst. Min. Metall. 239–245.
  • KAWATRA, S.K., DARLING, P., 2011. Fundamental principles of froth flotation, in: Mining Engineering Handbook. Society for Mining, Metallurgy, and Exploration, US, pp. 1517–1531.
  • KELLY, E.G., SPOTTISWOOD, D.J., 1982. Introduction to mineral processing. Wiley, New York. KHRAISHEH, M., HOLLAND, C., CREANY, C., HARRIS, P., PAROLIS, L., 2005. Effect of molecular weight and concentration on the adsorption of CMC onto talc at different ionic strengths. Int. J. Miner. Process. 75, 197–206. doi:10.1016/j.minpro.2004.08.012.
  • KIRJAVAINEN, V., HEISKANEN, K., 2005. Some Aspects of the Flotation of Sulfide Nickel-Copper Ores. Centen. Flotat. Symp. 6–9.
  • KLASSEN, V I; MOKROUSOV, V.A., 1963. An introduction to the Theory of Flotation. Butterworths, London.
  • KOH, P.T.L., HAO, F.P., SMITH, L.K., CHAU, T.T., BRUCKARD, W.J., 2009. The effect of particle shape and hydrophobicity in flotation. Int. J. Miner. Process. 93, 128–134.
  • KURNIAWAN, A.U., OZDEMIR, O., NGUYEN, A. V., OFORI, P., FIRTH, B., 2011. Flotation of coal particles in MgCl2, NaCl, and NaClO 3 solutions in the absence and presence of Dowfroth 250. Int. J. Miner. Process. 98, 137–144. doi:10.1016/j.minpro.2010.11.003.
  • KUSUMA, A.M., LIU, Q., ZENG, H., 2014. Understanding interaction mechanisms between pentlandite and gangue minerals by zeta potential and surface force measurements. Miner. Eng. 69, 15–23.
  • LAI, R.W.M., STONE, L.C., RIMMASCH, B.E., 1984. Effect of humus organics on the flotation recovery of molybdenite. Int. J. Miner. Process. 12, 163–172.
  • LASKOWSKI, J., CASTRO, S., 2015. Flotation in concentrated electrolyte solutions. Int. J. Miner. Process. 144, 50–55. doi:10.1016/j.minpro.2015.09.017.
  • LASKOWSKI, J., CASTRO, S., 2014. Flotation in highly concentrated electrolyte solutions. Int. Miner. Process. Congr. 1– 12.
  • LASKOWSKI, J.S., CHO, Y.S., DING, K., 2003. The effect of frothers on bubble size and foam stability in potash ore flotation. Can. J. Chem. Eng. 81, 63–69.
  • LASKOWSKI, J.S., LIU, Q., O’CONNOR, C.T., 2007. Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface. Int. J. Miner. Process. 84, 59–68. doi:10.1016/j.minpro.2007.03.006.
  • LEKKI, J., LASKOWKI, J.S., 1975. A new concept of frothing in flotation systems and general classification of flotation frothers, in: The XI International Mineral Processing Congress (IMPC1975). The International Mineral Processing Congress, Calgari, pp. 427–448.
  • LESSARD, R.R., ZIEMINSKI, A.S., 1971. Bubble coalescence and gas transfer in aqueous electrolytic solutions. Ind. Eng. Chem. Fundam. 10, 260–269.
  • LEVAY, G., SMART, R., SKINNER, W., 2001. The impact of water quality on flotation performance. J. South African Inst. Min. Metall.1, 69–76.
  • LI, M.Y., WEI, D.Z., SHEN, Y.B., LIU, W.G., GAO, S.L., LIANG, G.Q., 2015. Selective depression effect in flotation separation of copper-molybdenum sulfides using 2,3-disulfanylbutanedioic acid. Trans. Nonferrous Met. Soc. China (English Ed. 25, 3126–3132. doi:10.1016/S1003-6326(15)63942-5.
  • LIMA, N.P., DE SOUZA PINTO, T.C., TAVARES, A.C., SWEET, J., 2016. The entrainment effect on the performance of iron ore reverse flotation. Miner. Eng. 96–97, 53–58. doi:10.1016/j.mineng.2016.05.018.
  • LIU, W., MORAN, C.J., VINK, S., 2014. A review of the effect of water quality on flotation. Miner. Eng. 53, 91–100. LLOYD, P., 1981. The flotation of gold, uranium pyrite from Witwatersrand. J. South African Inst. Min. Metall. 81, 41– 47.
  • LUTANDULA, M.S., MWANA, K.N., 2014. Pertubations from the recycled water chemical components on flotation of oxidised ores of copper – the case of bicarbonates ions. J. Environ. Chem. Eng. 190–198.
  • MANONO, M.S., CORIN, K.C., WIESE, J.G., 2013. The effect of ionic strength of plant water on foam stability: A 2-phase flotation study. Miner. Eng. 40, 42–47. doi:10.1016/j.mineng.2012.09.009.
  • MANONO, M.S., CORIN, K.C., WIESE, J.G., 2012. An investigation into the effect of various ions and their ionic strength on the flotation performance of a platinum bearing ore from the Merensky reef. Miner. Eng. 36–38. doi:10.1016/j.mineng.2012.03.035.
  • MARRUCCI, G., NICODEMO, L., 1967. Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes. Chem. Eng. Sci. 22, 1257–1265. doi:https://doi.org/10.1016/0009-2509(67)80190-8.
  • MARTINOVIC, J., 2004. Investigation of the Surface Properties of Gangue Minerals in PGM Bearing Ores. University of Cape Town.
  • MCFADZEAN, B., O’CONNOR, C.T., 2014. A thermochemical study of thiol collector surface reactions on galena. Miner. Eng. 65, 54–60.
  • MCHARDY, J.C., 1973. Surface chemistry of talc flotation.
  • MILLER, J.D., LI, J., DAVIDTZ, J.C., VOS, F., 2005. A review of pyrrhotite flotation chemistry in the processing of PGM ores. Miner. Eng. 18, 855–865.
  • MOIMANE, T.M., CORIN, K.C., WIESE, J.G., 2016b. The effect of varying pulp reagent chemistry on the flotation performance of a South African PGM ore. Miner. Eng. 95, 155–160.
  • MOIMANE, T.M., CORIN, K.C., WIESE, J.G., 2016a. Investigation of the interactive effects of the reagent suite in froth flotation of a Merensky ore. Miner. Eng. 96–97, 39–45.
  • MORGAN, J.J., STUMM, W., 1964. Colloid-chemical properties of manganese dioxide. J. Colloid Sci. 19, 347–359.
  • MUZENDA, E. 2010. An investigation into the effect of water quality on flotation performance. World Academy of Science, Engineering and Technology, 69, 237-241.
  • MUZENDA, E., AFOLABI, A.S., ABDULKAREEM, A.S., NTULI, F., 2011. Effect of pH on the Recovery and Grade of Base Metal Sulphides (PGMs) by Flotation. Proc. World Congr. Eng. Comput. Sci. 2011 Vol II II, 19–22.
  • NGOBENI, W.A., HANGONE, G., 2013. The effect of using sodium di – methyl – dithiocarbonate as a co – collector with xanthates in the froth flotation of pentlandite containing ore from Nkomati mine in South Africa. Miner. Eng. 54, 94–99.
  • PAROLIS, L.A.S., VAN DER MERWE, R., GROENMEYER, G. V., HARRIS, P.J., 2008. The influence of metal cations on the behaviour of carboxymethyl celluloses as talc depressants. Colloids Surfaces A Physicochem. Eng. Asp. 317, 109–115. doi:10.1016/j.colsurfa.2007.10.001.
  • PETERS, E.N., MEYBECK, M., 2000. Water quality degradation effects on freshwater availability: impacts of human activities. Water Int. 25, 185–193.
  • PUGH, R.J., WEISSENBORN, P., PAULSON, O., 1997. Flotation in inorganic electrolytes; the relationship between recover of hydrophobic particles, surface tension, bubble coalescence and gas solubility. Int. J. Miner. Process. 51, 125–138.
  • QIN, W., WU, J., JIAO, F., ZENG, J., 2017. Mechanism study on flotation separation of molybdenite from chalcocite using thioglycollic acid as depressant. Int. J. Min. Sci. Technol. doi:https://doi.org/10.1016/j.ijmst.2017.06.011.
  • QUINN, J.J., KRACHT, W., GOMEZ, C.O., GAGNON, C., FINCH, J.A., 2007. Comparing the effect of salts and frother (MIBC) on gas dispersion and froth properties. Miner. Eng. 20, 1296–1302. doi:10.1016/j.mineng.2007.07.007.
  • RAGHAVAN, S., HSU, L.L., 1984. Factors affecting the flotation recovery of molybdenite from porphyry copper ores. Int. J. Miner. Process. 12, 145–162.
  • RAMOS, O., CASTRO, S., LASKOWSKI, J.S., 2013. Copper-molybdenum ores flotation in sea water: Floatability and frothability. Miner. Eng. 53, 108–112. doi:10.1016/j.mineng.2013.07.009.
  • RAO, F., LÁZARO, I., IBARRA, L.A., 2016. Solution chemistry of sulphide mineral flotation in recycled water and sea water: a review. Miner. Process. Extr. Metall. 1–7.
  • RAO, S.R., FINCH, J.A., 1989. A review of water re-use in flotation. Miner. Eng. 2, 65–85.
  • REY, M., RAFFINOT, P., VON MICHAELIS, H., 1966. Flotation of Ores in Sea-Water, in: Water Management and Treatment for Mining and Metallurgical Operations. Randol International Ltd, Colorado, USA, pp. 3167–3174.
  • REYES-BOZO, L., HIGUERAS, P., GODOY-FAÚNDEZ, A., SOBARZO, F., SÁEZ-NAVARRETE, C., VÁSQUEZBESTAGNO, J., HERRERA-URBINA, R., 2014. Assessment of the floatability of chalcopyrite, molybdenite and pyrite using biosolids and their main components as collectors for greening the froth flotation of copper sulphide ores. Miner. Eng. 64, 38–43.
  • RODERICK, A.J., DOPSON, G., VON MICHAELIS, H., 1985. Factors Influencing Water Quality, in: von Michaelis, H. (Ed.), Water Management and Treatment for Mining and Metallurgical Operations. Randol International Ltd, Colorado, USA, pp. 3052–3056.
  • ROJAS, J.O., CLAESSON, M.P., MULLER, D., & NEUMAN, D.R., 1998. The Effect of Salt Concentration on Adsorption of Low-Charge-Density Polyelectrolytes and Interactions between Polyelectrolyte-Coated Surfaces. J. Colloid Interface Sci. 205, 77–88.
  • ROSS, V E; DUNNE, R C; BURGER, R., 1984. The flotation of pyrite from Buffelsfontein mine material. Randburg.
  • SARHAN, A.R., NASER, J., BROOKS, G., 2017. Numerical simulation of froth formation in aerated slurry coupled with population balance modelling. Can. Metall. Q. 56, 45–57. doi:10.1080/00084433.2016.1268771.
  • SARHAN, A.R., NASER, J., BROOKS, G., 2016. CFD simulation on influence of suspended solid particles on bubbles’ coalescence rate in flotation cell. Int. J. Miner. Process. 146, 54–64. doi:https://doi.org/10.1016/j.minpro.2015.11.014.
  • SATTAR, M.A., NASER, J., BROOKS, G., 2013. Numerical simulation of two-phase flow with bubble break-up and coalescence coupled with population balance modeling. Chem. Eng. Process. Process Intensif. 70, 66–76. doi:10.1016/j.cep.2013.05.006.
  • SCHWARZ, S., GRANO, S., 2005. Effect of particle hydrophobicity on particle and water transport across a flotation froth. Colloids Surfaces A Physicochem. Eng. Asp. 256, 157–164.
  • SETT, S., KARAKASHEV, S.I., SMOUKOV, S.K., YARIN, A.L., 2015. Ion-specific effects in foams. Adv. Colloid Interface Sci. 225, 98–113. doi:10.1016/j.cis.2015.08.007.
  • SHACKLETON, N.J., MALYSIAK, V., DE VAUX, D., PLINT, N., 2012. Water quality - A comparative study between moncheite and pentlandite in mixture with pyroxene. Miner. Eng. 36–38, 53–64. doi:10.1016/j.mineng.2012.02.004.
  • SHEN, W.Z., FORNASIERO, D., RALSTON, J., 2001. Flotation of sphalerite and pyrite in the presence of sodium sulfite. Int. J. Miner. Process. 63, 17–28.
  • SHENGO, L.M., GAYDARDZHIEV, S., KALENGA, N.M., 2014. Assessment of water quality effects on flotation of copper – cobalt oxide ore. Miner. Eng. 65, 145–148.
  • SHORTRIDGE, P G,HARRIS, P J, BRADSHAW, D.J., 1999. The influence of ions on the effectiveness of polysaccharide depressants in the flotation of talc, in: Laskowski, J.S. (Ed.), Polymers in Mineral Processing. 3rd UBC-McGill BiAnnual International Symposium on Fundamentals of Mineral Processing. CIM, Quebec City, Canada, pp. 155– 169.
  • SLATTER, K. A., PLINT, N. D., COLE, M., DE VAUX, D., PALM, N., OOSTENDORP, B., 2009. Water management in Anglo Platinum process operations: effects of water quality on process operations. Abstr. Int. Mine Water Conf. Pretoria, South Africa, 19th – 23rd Oct. 2009 Proc. ISBN Number 978-0-9802623-5-3 46–55.
  • SUN, W., HAN, H., TAO, H., LIU, R., 2015. Study on the flotation technology and adsorption mechanism of galena– jamesonite separation. Int. J. Min. Sci. Technol. 25, 53–57. doi:https://doi.org/10.1016/j.ijmst.2014.11.011.
  • TAO, D., LUTTRELL, G.H., YOON, R.H., 2000. A parametric study of froth stability and its effect on column flotation of fine particles. Int. J. Miner. Process. 59, 25–43.
  • VIVIERS, J.M.P., 1979. The effect of water quality on mineral flotation. Randburg.
  • WANG, B., PENG, Y., 2014. The effect of saline water on mineral flotation - A critical review. Miner. Eng. 66, 13–24. doi:10.1016/j.mineng.2014.04.017.
  • WANG, B., PENG, Y., VINK, S., 2014. Effect of saline water on the flotation of fine and coarse coal particles in the presence of clay minerals. Miner. Eng. 66, 145–151. doi:10.1016/j.mineng.2014.03.016.
  • WEISSENBORN, P.K., PUGH, R.J., 1996. Surface Tension of Aqueous Solutions of Electrolytes: Relationship with Ion Hydration, Oxygen Solubility, and Bubble Coalescence. J. Colloid Interface Sci. 184, 550–563. doi:https://doi.org/10.1006/jcis.1996.0651.
  • WESSELDIJK, Q I; BRADSHAW, D J; HARRIS, P J; REUTER, M.A., 1999. The flotation behavior of chromite with respect to the beneficiation of UG-2 ore. Miner. Eng. 12, 1184–1999.
  • WIESE, J., HARRIS, P., 2012. The effect of frother type and dosage on flotation performance in the presence of high depressant concentrations. Miner. Eng. 36–38, 204–210. doi:10.1016/j.mineng.2012.03.028.
  • WIESE, J., HARRIS, P., BRADSHAW, D., 2007. The response of sulphide and gangue minerals in selected merensky ores to increased depressant dosages. Miner. Eng. 20, 986–995. doi:10.1016/j.mineng.2007.03.008.
  • WIESE, J., HARRIS, P., BRADSHAW, D., 2005a. The influence of the reagent suite on the flotation of ores from the Merensky reef. Miner. Eng. 18, 189–198. doi:10.1016/j.mineng.2004.09.013.
  • WIESE, J., HARRIS, P., BRADSHAW, D., 2005b. Investigation of the role and interactions of a dithiophosphate collector in the flotation of sulphides from the Merensky reef. Miner. Eng. 18, 791–800. doi:10.1016/j.mineng.2005.01.032.
  • WILLS, B.A., NAPIER-MUNN, T., 2006. Mineral Processing Technology. An Introduction to the Practical Aspect of Ore Treatment and Mineral Recovery. Elsevier Science & Technology Books.
  • YIN, Z., SUN, W., LIU, J., HU, Y., GUAN, Q., ZHANG, C., TANG, H., GUAN, C., 2016. Investigation into the flotation response of refractory molybdenum ore to depressant mixtures: A case study. Int. J. Min. Sci. Technol. 26, 1089–1094. doi:https://doi.org/10.1016/j.ijmst.2016.09.018.
  • YOUSEF, A.A., ARAFA, M.A., IBRAHIM, S.S., ABDEL KHALEK, M.A., 2003. Seawater usage in flotation for minerals beneficiation in arid regions - Simulation and Application, in: Lorenzen, L., Bradshaw, D.J. (Eds.), Proceedings of the 22nd International Mineral Processing Congress. South African Institute of Mining and Metallurgy, Cape Town, pp. 1023–1031.
  • ZHANG, Q., XU, Z., BOZKURT, V., FINCH, J.A., 1997. Pyrite flotation in the presence of metal ions and sphalerite. Int. J. Miner. Process. 52, 187–201. doi:10.1016/S0301-7516(97)00064-1.
  • ZHENG, X., JOHNSON, N.W., FRANZIDIS, J.P., 2006. Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Miner. Eng. 19, 1191–1203. doi:10.1016/j.mineng.2005.11.005.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-beaa9fc6-ef37-4377-8172-4f7852cb23c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.