PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of behaviour of the steel arch support in the geological and mining conditions of the Cam Pha coal basin, Vietnam

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, the Vietnamese coal mining industry has observed a dynamic increase in both its production and efficiency. In Vietnam, the most precious type of coal is anthracite, which is found in the Quang Ninh province. Industrial anthracite deposits are estimated to be over 2 billion Mg. At present, coal deposits are extracted mostly by the underground method. Coal production is gradually increasing in the underground mines in the Quang Ninh area and it is expected to constitute about 75% of the country’s total coal production in 2030. This involves an increase in the number and length of underground workings. Cam Pha is the largest coal basin of Vietnam, located in the Quang Ninh province. So far, the yearly length of underground workings driven in underground mines in the Cam Pha basin is roughly 90÷150 km. About 84 % of these underground workings are supported by the steel arch support made of SWP profile. A similar situation can be observed in Russia, Ukraine, China, India and Turkey. In addition, the average length of repaired underground workings in the Cam Pha basin constitutes approximately 30% of the total length driven . The main cause was reported is loss of underground workings stability. This requires significant material and labour costs as well as the cost of replacing damaged elements. Addi-tionally, it disturbs the continuity of the mining operations.This article presents the results of the numerical modelling of the rock mass around underground wor-kings driven in typical geo-mining conditions for underground coal mines in the Cam Pha basin, supported by the steel arch support made of SWP and V profiles. As a result of the conducted analyses, the range of failure zone of the rock mass around underground workings and the distribution of reduced stress in the steel arch support elements were determined. The effort states of the steel arch support made of SWP22 profile and V21 profile were compared. The simulations considered different inclinations angle of coal seam, following the structure of the rock mass in the Cam Pha basin. The analysis was carried out using the based-finite difference method code, FLAC2D. Based on the obtained results, actions for improving the stability of underground workings driven in the underground mines of the Cam Pha basin were proposed.
Rocznik
Strony
551--567
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Vinacomin – Institute of Mining Science & Technology (IMSAT), 3 Phan Dinh Giot, Phuong Liet, Thanh Xuan, Ha Noi, Vietnam
  • Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
autor
  • Vinacomin – Institute of Mining Science & Technology (IMSAT), 3 Phan Dinh Giot, Phuong Liet, Thanh Xuan, Ha Noi, Vietnam
Bibliografia
  • [1] T.D. Le, X.N. Bui, Status and prospects of underground coal mining technology in Vietnam. Inżynieria Mineralna – Journal of the Polish Mineral Engineering Society, 21 (2), 105-111 (2019), DOI: 10.29227/IM-2019-02-63.
  • [2] W. Mijał, Coal Mining and Coal Preparation in Vietnam. Inżynieria Mineralna – Journal of the Polish Mineral Engineering Society 1 (41), 275-286 (2018), DOI: 10.29227/IM-2018-01-40.
  • [3] P.M.V. Nguyen, Optimization of crown pillar in transition from open pit to underground for the Quang Ninh coal basin, Vietnam. Ph.D. diss., AGH University of Science and Technology, Cracow (2017) (in Polish).
  • [4] Vietnam National Coal and Mineral Industries Holding Corporation Limited (VINACOMIN), Master Plan of coal industry development in Vietnam by 2020, with perspective to 2030, Hanoi, Vietnam (2016) (in Vietnamese).
  • [5] D.H. Duong, H.Q. Dao, M. Turek, A. Koteras, The status and prospect of mining technology in Vietnam underground coal mines. Inżynieria Mineralna – Journal of the Polish Mineral Engineering Society 21 (2), 146-154 (2019), DOI: 10.29227/IM-2019-02-68.
  • [6] N.A. Do, D. Dias, P. Oreste, V.D. Dinh, Stability of tunnels excavated along anisotropic rock masses. Proceeding of international conference on earth sciences and sustainable geo-resources development, Hanoi, Vietnam (2016).
  • [7] V.C. Le, Research on design of V shaped profile steel support for mining roadway of large cross-section in Quang Ninh coal basin. Project summary to Ministry of Science and Technology, Hanoi, Vietnam (2017) (in Vietnamese).
  • [8] T.M. Tran, Q.T. Do, N.B. Nguyen, Research on the state of stress-deformation in rock mass and assessment effects of supports around roadways in underground mines. Hanoi University of Mining and Geology, Hanoi, Vietnam (2016) (in Vietnamese).
  • [9] T.M. Tran, D.P. Nguyen, T.L. Nguyen, Technique and Technology of Underground Construction in Mining. Xay Dung publishing house, Hanoi, Vietnam (2016) (in Vietnamese).
  • [10] M.D. Pham, Application of steel arch supports made of SWP profiles aims to increase load bearing capacity, stability and long-term existence of underground workings. Bulletin of Mining Science and Technology – Institute of Mining Science and Technology (IMSAT), 4 (2017) (in Vietnamese).
  • [11] R. Podjadtke, H. Witthaus, J. Breedlove, Development in steel roadway suport – a track record. The 27th International Conference on Ground Control in Mining, Morgantown, WV, USA (2008).
  • [12] H. Kang, Support technologies for deep and complex roadways in underground coal mines: a review. International Journal of Coal Science & Technology 1 (3), 261-277 (2014), DOI: 10.1007/s40789-014-0043-0.
  • [13] M. Rotkegel, ŁPw Steel Arch Support – Designing and Test Results. Journal of Sustainable Mining, 12 (1), 34-40 (2013), DOI: 10.7424/jsm130107.
  • [14] A. Wichur, Zagadnienia projektowania obudowy długotrwałych wyrobiskach podziemnych. Górnictwo i Geoinżynieria 3/1, Kraków (2009).
  • [15] W.B. Xie, S.G. Jing, T. Wang, Structural stability of U-steel support and its control technology. Chinese J. Rock Mech. Eng. 29 (S2), 3743-3748 (2010).
  • [16] Y.M. Zhao, N. Liu, X.G. Zheng, N. Zhang, Mechnical model for controlling floor heave in deep roadways with U-shaper steel closed support. Int. J. Min. Sci. Technol. 25 (5), 713-720 (2015), DOI: 10.1016/j.ijmst.2015.07.003.
  • [17] Y.Y. Jiao, L. Song, X.Z. Wang, Improvement of the U-shaped steel sets for supporting the roadways in loose thick coal seam. Int. J. Rock. Mech. Min. Sci. 60, 19-25 (2013), DOI: 10.1016/j.ijrmms.2012.12.038.
  • [18] M.V. Ozdogan, H. Yenice, A. Gonen, D. Karakus, Optimal Support Spacing for Steel Sets: Omerler Underground Coal Mine in Western Turkey. International Journal of Geomechanics 18 (2) (2017), DOI: 10.1061/(ASCE)GM.1943-5622.0001069.
  • [19] Vietnam National Coal and Mineral Industries Holding Corporation Limited (VINACOMIN), Report on Under-ground Extraction in the period 2014-2018 and Orientation Stage for the period 2019-2023, Quang Ninh, Vietnam (2019) (in Vietnamese).
  • [20] M.D. Pham, The ability of uplift in the underground workings located in the Quang Ninh coal seam basin and solutions to minimize and prevent uplift. Bulletin of Mining Science and Technology – Institute of Mining Science and Technology (IMSAT), 3 (2017) (in Vietnamese).
  • [21] Institute of Mining Science and Technology (IMSAT), Report: Research on procedures to prevent uplift in the underground workings at the Mao Khe coal mine, Hanoi, Vietnam (2018) (in Vietnamese).
  • [22] Institute of Mining Science and Technology (IMSAT), Report: Current status of Vietnamese hard Coal Mining, Hanoi, Vietnam (2013) (in Vietnamese).
  • [23] Institute of Mining Science and Technology (IMSAT), Assessments on geotechnical, hydrogeological conditions at Underground mines in the Cam Pha region, Quang Ninh province, Vietnam (2012) (in Vietnamese).
  • [24] GOST 18662-73. Profile gorącowalcowane SWP dla obudów górniczych.
  • [25] www.tisco.com.vn
  • [26] FLAC (2-Dimensional Finite Difference Code), Version 6.0, Itasca Consulting Group Inc., Minneapolis, 2008; software available at www.itascacg.com.
  • [27] Z. Dyląg, A. Jakubowicz, Z. Orłoś, Wytrzymałość materiałów. Wydawnictwa Naukowo-Techniczne, Warszawa (1996).
  • [28] K. Skrzyński, et al., Opracowanie ujednoliconej metodyki analitycznego określania nośności i wytrzymałości odrzwi obudowy z kształtowników V z uwzględnieniem charakterystyki sił biernych. Dokumentacja prac wykonanych w ramach działalności statutowej. Główny Instytut Górnictwa, Katowice (1999) (niepublikowana).
  • [29] PN-B-03200, Konstrukcje stalowe. Obliczenia statyczne i projektowanie.
  • [30] PN-H-93441-3, Kształtowniki stalowe walcowane na gorąco dla górnictwa. Część 3: Kształtowniki typu V. Wymiary.
  • [31] N. Mohammad, D.J. Reddish, L.R. Stace, Technical note: the relation between in Situ and laboratory rock properties used in numerical modelling. Int. J. Rock Mech. Min. Sci. 34 (2), 289-297 (1997), DOI: 10.1016/S0148-9062(96)00060-5.
  • [32] M. Rotkegel, M. Grodzicki, Porównanie nośności odrzwi z wybranych kształtowników walcowanych z różnych gatunków stali. Cuprum 1 (66), 55-65 (2013).
  • [33] W. Hałat, Nośności odrzwi wybranych obudów łukowych. Górnictwo i Geoinżynieria 3/1, Kraków (2005).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bea643af-62da-463b-b76d-3cd88b9473a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.