PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electricity supply to irrigation systems for crops away from urban areas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water scarcity is a phenomenon that is occurring more and more frequently in larger areas of Europe. As a result of drought, there are significant drops in yields. As demand for food continues to rise, it is becoming necessary to bring about a substantial increase in crop production. The best solution to water scarcity appears to be irrigation for crops that are particularly sensitive to drought. Today, many technical solutions are used to supply and distribute water to crops. The optimal solution is drip irrigation, which makes it possible to deliver water directly to the plant root system to save melting freshwater resources. In the article special attention was paid to methods of supplying electricity to power irrigation pumps. The analysis was made for areas with a significant distance between the agricultural land and the urbanised area (which has water and electricity). The authors have selected the parameters of an off-grid photovoltaic mini-hydropower plant with energy storage (with a power of 1.36 kW). An analysis was made of the profitability of such an investment and a comparison with other types of power supply. Based on the performed calculations, a prototype power supply system equipped with photovoltaic panels was made to show the real performance of the proposed system. The tests carried out showed that the irrigation pump will be powered most of the time with a voltage whose parameters will be very close to the nominal ones.
Wydawca
Rocznik
Tom
Strony
73--79
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45 D, 15-351 Białystok, Poland
  • Institute of Technology and Life Sciences – National Research Insitute, Falenty, Poland
  • The Higher School of Agribusiness in Łomża, Poland
  • The Higher School of Agribusiness in Łomża, Poland
Bibliografia
  • AMMAR A., HAMRAOUI K., BELGUELLAOUI M., KHELDOUN A. 2022. Performance enhancement of photovoltaic water pumping system based on BLDC Motor under partial shading condition. Engineering Proceedings. Vol. 14(1), 22. DOI 10.3390/en-gproc2022014022.
  • HASHEM M.S., EL-ABEDIN T.Z., AL.-GHOBARI H.M. 2018. Assessing effects of deficit irrigation techniques on water productivity of tomato for subsurface drip irrigation system. International Journal of Agricultural and Biological Engineering. Vol. 11(4) p. 156–167. DOI 10.25165/j.ijabe.20181104.3846.
  • HOŁDYŃSKI G., SKIBKO Z. 2014. Parametry opisujące jakość energii elektrycznej [Parameters of the electric energy quality] [online]. Elektro.info. Nr 12. [Access 10.06.2021]. Available at: https://www.elektro.info.pl/artykul/jakosc-energii-elektrycznej/58819,parametry-opisujace-jakosc-energii-elektrycznej
  • JANKOWIAK J., BIEŃKOWSKI J. 2011. Kształtowanie i wykorzystanie zasobów wodnych w rolnictwie [Shaping and use of water resources in agriculture]. Infrastruktura i Ekologia Terenów Wiejskich. No. 5 p. 39–48.
  • KARCZMARCZYK S., NOWAK L. 2006. Nawadnianie roślin [Plant irrigation]. Poznań. PWRiL. ISBN 9788309010098 pp. 480.
  • KHAN M.R. 2012. Prospect of solar PV based irrigation in rural Bangladesh: A comparative study with diesel based irrigation system. In: 2nd International Conference on the Developments in Renewable Energy Technology (ICDRET 2012). IEEE p. 1–3.
  • KOUTSOYIANNIS D. 2020. Revisiting the global hydrological cycle: Is it intensifying? Hydrology and Earth System Sciences. Vol. 24 p. 3899–3932. DOI 10.5194/hess-24-3899-2020.
  • KOWALIK P. 2010. Agrohydrologia obliczeniowa [Computational agrohydrology]. Monografie Komitetu Gospodarki Wodnej Polskiej Akademii Nauk. No. 33. Warszawa. KGW PAN. ISSN 0867-7816 pp. 207.
  • KUCHAR L., IWAŃSKI S. 2011. Symulacja opadów atmosferycznych dla oceny potrzeb nawodnień roślin w perspektywie oczekiwanych zmian klimatycznych [Simulation of precipitation for the assessment of plant irrigation needs in the perspective of expected climate changes]. Infrastruktura i Ekologia Terenów Wiejskich. No. 5 p. 7–18.
  • KUŚMIEREK-TOMASZEWSKA R., ŻARSKI J., DUDEK S. 2012. Meteorological automated weather station data application for plant water requirements estimation. Computers and Electronics in Agriculture. Vol. 88 p. 44–51.
  • ŁABĘDZKI L. 2009. Przewidywane zmiany klimatyczne a rozwój nawodnień w Polsce [Predicted climate changes and irrigation development in Poland]. Infrastruktura i Ekologia Terenów Wiejskich. No. 3 p. 7–18.
  • MUBARAK I., HAMDAN A. 2018. Onion crop response to regulated deficit irrigation under mulching in the dry Mediterranean region. Journal of Horticultural Research. Vol. 26(1) p. 87–94. DOI 10.2478/johr-2018-0010.
  • MHAMMAD D., MOSLEH M., KHAN S.H. 2014. Assessment and evaluation of solar irrigation system in Bangladesh. In: Proceedings of the 2014 3rd International Conference on the Developments in Renewable Energy Technology (ICDRET). 29–31 May 2014 Dhaka, Bangladesh p. 1–6. DOI 10.1109/ICDRET.2014.6861651.
  • PADOLE N., MOHARIL R., MUNSHI A. 2022. Performance investigation based on vital factors of agricultural feeder supported by solar photovoltaic power plant. Energies. Vol. 15(1), 75. DOI 10.3390/en15010075.
  • ROMANIUK W., SAVINYKH P.A., BOREK K., PLOTNIKOWA Y.A., PALITSYN A. V., KOROTKOV A.N., ROMAN K., ROMAN M. 2021. Improvement of gas generator technology for energy processing of agricultural waste. Energies. Vol. 14, 3642. DOI 10.3390/en14123642.
  • RZEKANOWSKI C., ŻARSKI J., ROLBIECKI S. 2011. Potrzeby, efekt i perspektywy nawadniania roślin na obszarach szczególnie deficytowych w wodę [Needs, effects and perspectives irrigation of plants in areas areas particularly scarce in wate]. Postępy Nauk Rolniczych. No. 1 p. 51–63.
  • SCHEIERLING S.M., TRÉGUER D.O. 2018. Beyond crop per drop: Assessing agricultural water productivity and efficiency in a maturing water economy. International development in fo-cus. Washington, DC. World Bank. ISBN 978-1-4648-1298-9 pp. 99. DOI 10.1596/978-1-4648-1298-9.
  • SCHNITZER D., LOUNSBURY D., CARVALLO J., DESHMUKH R., APT J., KAMMEN D.M. 2014. Microgrids for rural electrification. A critical review of best practices based on seven case studies [online]. New York, NY, USA. United Nations Foundation pp. 110. [Access 15.06.2021]. Available at: https://rael.berkeley.edu/wp-content/uploads/2015/04/MicrogridsReportEDS.pdf
  • SHINDE V., WANDRE S. 2015. Solar photovoltaic water pumping system for irrigation: A review. African Journal of Agricultural Research. Vol. 10 p. 2267–2273.
  • SHCHUR I., LIS M., BILETSKYI Y. 2021. Passivity-based control of water pumping system using BLDC motor drive fed by solar PV array with battery storage system. Energies. Vol. 14(23), 8184. DOI 10.3390/en14238184.
  • SHOEB M.A., SHAFIULLAH G. 2018. Renewable energy integrated islanded microgrid for sustainable irrigation – A Bangladesh perspective. Energies. Vol. 11(5), 1283. DOI 10.3390/en11051283.
  • SKIBKO Z., TYMIŃSKA M., ROMANIUK W., BORUSIEWICZ A. 2021a. Impact of the wind turbine on the parameters of the electricity supply to an agricultural farm. Sustainability. Vol. 13(13), 7279. DOI 10.3390/su13137279.
  • SKIBKO Z., DEREHAJŁO S., TYMIŃSKA M. 2021b. Influence of agricultural biogas plants on the power grid parameters. V: Uluchsheniye ekspluatatsionnykh pokazateley sel’skokhozyaystvennoy energetiki. Materialy XIV Mezhdunarodnoy nauchno-prakticheskoy konferentsii [In: Improving the performance of agricultural energy. Materials of the XIV International Scientific and Practical Conference]. Eds. E.S. Simbirskih, W. Romaniuk. Vyp. 21. Kirov. Vyatskaya GSA p. 3–12.
  • STACHOWSKI P., MARKIEWICZ J. 2011. Potrzeba nawodnień w centralnej Polsce na przykładzie Powiatu Kutnowskiego [The need for irrigation in central Poland on the example of Kutno district]. Rocznik Ochrona Środowiska. T. 13 p. 1453–1472.
  • STEPNOWSKI R. 2020. Susza zmienia wszystko [The drought changes everything] [online]. Gazeta Obserwatora IMGW. Wydanie specjalne. [Access 25.06.2021]. Available at: https://www.imgw.pl/sites/default/files/2021-01/imgw-obserwator-susza-2020.pdf
  • WAKCHAURE G.C., MINHAS P.S., MEENA K.K., SINGH N.P., HE-GADE P.M., SORTY A.M. 2018. Growth, tuber yield, water productivity, and quality of onion (Allium cepa L.) are affected by deficit irrigation regimes and exogenous plant bio-regulators. Agricultural Water Management. Vol. 199 p. 1–10. DOI 10.1016/j.agwat.2017.11.026.
  • WAŁOWSKI G. 2021. Development of biogas and biorafinery systems in Polish rural communities. Journal of Water and Land Development. No. 49 p. 156–168. DOI 10.24425/jwld.2021.137108.
  • WANG K., ALI M.M., PAN K., SU S., XU J., CHEN F. 2022. Ebb-and-flow subirrigation improves seedling growth and root morphology of tomato by influencing root-softening enzymes and transcript profiling of related genes. Agronomy. Vol. 12(2), 494. DOI 10.3390/agronomy12020494.
  • WANG D., SHEN Y., HU Z., CUI T., YUAN X. 2019. Active and reactive power joint balancing for analyzing short-term voltage instability caused by induction motor. Energies. Vol. 12(19), 3617. DOI 10.3390/en12193617.
  • WIŚNIEWSKI R., SKIBKO Z. 2017. Zdalny system monitorowania jakości energii elektrycznej w sieciach elektroenergetycznych na przykładzie systemu WinPQ [Maintenance-free system of monitoring the electric power quality in electrical grid using WinPQ software]. Wiadomości Elektrotechniczne. R. 85(9) p. 55–58. DOI 10.15199/74.2017.9.10.
  • YANG H., LIU H., ZHENG J., HUANG Q. 2018. Effects of regulated deficit irrigation on yield and water productivity of chili pepper (Capsicum annuum L.) in the arid environment of North-west China. Irrigation Science. Vol. 36(1) p. 61–74. DOI 10.1007/s00271-017-0566-4.
  • ZOTARELLI L., DUKES M.D., SCHOLBERG J.M.S., MUÑOZ-CARPENA R., ICERMAN J. 2009. Tomato nitrogen accumulation and fertiliser use efficiency on sandy soil, as affected by nitrogen rate and irrigation scheduling. Agricultural Water Management. Vol. 96 p. 1247–1258.
  • ŻARSKI J., DUDEK S., GRZELAK B. 2007. Porównanie efektów nawadniania kroplowego kukurydzy na dwóch rodzajach gleb [Comparison of the effects of drip irrigation of maize on two soil types]. Zeszyty Problemowe Postępów Nauk Rolniczych. Z. 519 p. 339–345.
  • ŻARSKI J., DUDEK S., KUŚMIEREK-TOMASZEWSKA R., ROLBIECKI R., ROLBIECKI S. 2013. Prognozowanie efektów nawadniania roślin na podstawie wybranych wskaźników suszy meteorologicznej i rolniczej [Forecasting effects of plants irrigation based on selected meteorological and agricultural drought indices]. Rocznik Ochrona Środowiska. Vol. 15 p. 2185–2203.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bea531cc-7a8f-4e78-8165-153e351f36b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.