PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trwałość samozagęszczalnej zaprawy ze spoiwa wieloskładnikowego pod wpływem zewnętrznych czynników chemicznych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Durability of self-compacting mortar based on composite binder under external chemical attacks
Języki publikacji
PL EN
Abstrakty
PL
Właściwości użytkowe betonów i zapraw są szczególnie powiązane z ich składem i stosunkiem wody do cementu. Zastosowanie cementu portlandzkiego [OPC] jako spoiwa zwiększa ciepło hydratacji i koszt cementu oraz emisję CO2. Zatem użytecznym rozwiązaniem może być zastosowanie spoiwa wieloskładnikowego poprzez zmniejszenie ilości OPC i wprowadzenie dodatków mineralnych. W tym badaniu OPC częściowo zastąpiono mączką marmurową [MP] w różnych proporcjach: 5, 10, 15 i 20% i zbadano wpływ MP na trwałość zapraw samozagęszczalnych [SCM] narażonych na agresję chemiczną. Zastosowano dwa roztwory korozyjne: siarczanu sodu [Na2SO4] i kwasu chlorowodorowego [HCl]. Stężenia roztworów wynosiły odpowiednio 5 i 1%. Wyniki wykazały, że zastosowanie proszku marmurowego korzystnie wpływa na poprawę odporności SCM na agresywne roztwory. Dodanie 20% MP zwiększyło odporność na działanie siarczanu sodu o 46% po 180 dniach. Stwierdzono, że stosowanie dodatku MP w zakresie od 10 do 20% zmniejsza utratę masy o 1 do 0,47%.
EN
The performance of concrete / mortar is specially related to their composition and water to cement ratio. The use of Ordinary Portland cement [OPC] as binder increases the hydration heat and cost of cement and CO2 emissions. So the use of composite binder by reducing the amount of OPC and introducing mineral additions can be a useful solution. In this study, OPC was partially substituted with marble powder [MP] at various percentages (5, 10, 15 and 20%) and the effect of MP on the durability of self compacting mortars [SCM] exposed to chemical aggressions was investigated. Two aggressive solutions were used sodium sulfate [Na2SO4] and hydrochloric acid [HCl]. The dosages of the solutions were 5 and 1%, respectively. The results revealed that the use of marble powder is beneficial for improving the resistance of SCM to aggressive solutions. Adding 20% MP increased the resistance against sodium sulfate attack by 46% at 180 days. Using MP with content ranged between 10 to 20% was found to reduce mass loss by 1 to 0.47%.
Czasopismo
Rocznik
Strony
71--81
Opis fizyczny
Bibliogr. 23 poz., il., tab.
Twórcy
  • Structure Rehabilitation and Materials Laboratory, University of Amar Telidji, Laghouat, Algeria
  • Research Laboratory of Civil Engineering, University of Amar Telidji, Laghouat, Algeria
  • Research Laboratory of Civil Engineering, University of Amar Telidji, Laghouat, Algeria
Bibliografia
  • 1. M. Bederina, Z. Makhloufi, A. Bounoua, T. Bouziani, M. Queneudec, Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions. Constr. Build. Mater. 47, 146-158 (2013). https://doi.org/10.1016/j.conbuildmat.2013.05.037
  • 2. H. Pengfey, B. Yiwang, Y. Yan, Influence of HCl corrosion on the mechanical properties of concrete. Cem. Concr. Res. 35, 584-9 (2005). https://doi.org/10.1016/j.cemconres.2004.06.027
  • 3. A. Boukhelkhal, L. Azzouz, S. Kenai, E.H. Kadri, B. Benabed, Combined effects of mineral additions and curing conditions on strength and durability of self-compacting mortars exposed to aggressive solutions in the natural hot-dry climate in North African desert region. Constr Build Mater. 197, 307-318 (2019). https://doi.org/10.1016/j.conbuildmat.2018.11.233
  • 4. M.A. Neville, Propriétés des bétons, 4th ed., Eyrolles, 2000.
  • 5. Z. Makhloufi, E.H. Kadri, M. Bouhicha, A. Benaissa, Resistance of limestone mortars with quaternary binders to sulfuric acid solution. Constr. Build. Mater. 26, 497-504 (2012). https://doi.org/10.1016/j.conbuildmat.2011.06.050
  • 6. D.K. Ashish, S.K. Verma, Robustness of self-compacting concrete containing waste foundry sand and metakaolin: A sustainable approach. J. Hazard. Mater. 401, (2021). https://doi.org/10.1016/j.jhazmat.2020.123329
  • 7. A. Boukhelkhal, S. Kenai, Assessment of fluidity retention, mechanical strength and cost production of blended cement self-compacting concrete using the concept of a performance index. Frat. ed Integrità Strutt. 60, 89-101 (2022). https://doi.org/10.3221/IGF-ESIS.60.07
  • 8. D.K. Ashish, S.K. Verma, Determination of optimum mixture design method for self-compacting concrete: Validation of method with experimental results. Constr. Build. Mater. 217, 664-678 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.034
  • 9. A, Boukhelkhal, Assessment of the behavior under conventional and high temperatures of eco-friendly self-compacting mortar containing glass and ceramic powders. Arab. J. Sci. Eng. 47, 4821-4831 (2022). https://doi.org/10.1007/s13369-020-05306-8
  • 10. M. Tennich, M. Ben Ouezdou, A, Kallel. Behavior of self-compacting concrete made with marble and tile wastes exposed to external sulfate attack. Constr. Build. Mater. 135, 335-342 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.193
  • 11. S.K. Adhikary, D.K. Ashish, H.Sharma, J. Patel, Ž. Rudžionis, M. Al-Ajamee, B.S. Thomas, J.M. Khatib, Lightweight self-compacting concrete: A review. Resour. Conserv. Recycl. Adv. 15, (2022). https://doi.org/10.1016/j.rcradv.2022.200107
  • 12. M. Abdulqader, H.R. Khalid, M. Ibrahim, S.K. Adekunle, M. A. Al-Osta, S. Ahmad, M. Sajid, Physicochemical properties of limestone calcined clay cement (LC3) concrete made using Saudi clays. J. Mater. Res. Technol. 25, 2769-2783 (2023). https://doi.org/10.1016/j.jmrt.2023.06.114
  • 13. A. Boukhelkhal, B. Benabed, Fresh and hardened properties of self-compacting repair mortar made with a new reduced carbon blended cement. Epa. - J. Silic. Based Compos. Mater. 71, 108-113 (2019). https://doi.org/10.14382/epitoanyag-jsbcm.2019.19
  • 14. D.M. Sadek, M.M. El-Attar, A.A. Haitham, Reusing of marble and granite powders in self-compacting concrete for sustainable development. J. Clean. Prod. 121, 19-32 (2016). https://doi.org/10.1016/j.jclepro.2016.02.044
  • 15. ASTM C 1012-04, Standard test methods for length change of hydraulic-cement mortars exposed to a sulfate solution. Annual Book of ASTM Standards (2004).
  • 16. ASTM C 267, Standard test methods for chemical resistance of mortars, grouts and monolithic surfacing and polymer concretes. Annual Book of ASTM Standards (1997).
  • 17. J. Sun, Z. Chen, Influences of limestone powder on the resistance of concretes to the chloride ion penetration and sulfate attack. Powder Technol. 338, 725-733 (2018). https://doi.org/10.1016/j.powtec.2018.07.041
  • 18. Y. Senhadjia, G. Escadeillas, M. Mouli, Khelafi H. Benosman, Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technol. 254, 314-323 (2014). https://doi.org/10.1016/j.powtec.2014.01.046
  • 19. D.K. Ashish, Concrete made with waste marble powder and supplementary cementitious material for sustainable development. J. Clean. Prod. 211, 716-729 (2019). https://doi.org/10.1016/j.jclepro.2018.11.245
  • 20. M. Ghrici, S. Kenai, M. Said-Mansour, Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cem. Concr. Compos. 29, 542-549 (2007). https://doi.org/10.1016/j.cemconcomp.2007.04.009
  • 21. G. Menéndez, V. Bonavetti, E.F. Irassar, Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cem. Concr. Compos. 25, 61-67 (2003). https://doi.org/10.1016/S0958-9465(01)00056-7
  • 22. L. Turanli, B. Uzal, F. Bektas, Effect of large amounts of natural pozzolan addition on properties of blended cements. Cem. Concr. Res. 35, 1106-1111 (2005). https://doi.org/10.1016/j.cemconres.2004.07.022
  • 23. B. Lothenbach, G. Le Saout, E. Gallucci, K. Scrivener, Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 38, 848-860 (2008). https://doi.org/10.1016/j.cemconres.2008.01.002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bea08616-4db8-44ec-86cf-a9e182f2629f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.