Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates the dynamic behavior of elastoplastic collision of several non-sphere particles through the spherical element combination method. The particles are cylinder, triangle and square particles, which are combined by 2, 3 and 4 spheres using the spherical element method, respectively. Results reveal that the collision of the evaluated irregular particles exhibits three contact styles, which are single point contact, instantaneous multi-point contact and sequential multi-point contact. Normal contact torque and frictional torque act together on the spin of a particle and causes sequential multi-point contact under certain conditions for square particles.
Czasopismo
Rocznik
Tom
Strony
431--–441
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Department of Engineering Mechanics, Henan University of Science and Technology, Luoyang, China
autor
- Department of Engineering Mechanics, Henan University of Science and Technology, Luoyang, China
autor
- Department of Engineering Mechanics, Henan University of Science and Technology, Luoyang, China
autor
- Department of Engineering Mechanics, Henan University of Science and Technology, Luoyang, China
autor
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an, China
autor
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an, China
Bibliografia
- 1. Abedi M., 2009, Effect of Restitution Coefficient on Inertial Particle Separator’s Efficiency, Master’s thesis, Northeastern University, Boston, Massachusetts.
- 2. Azimian M., Schmitt P., Bart H.J., 2015, Numerical investigation of single and multi impacts of angular particles on ductile surfaces, Wear, 342, 252-261.
- 3. Cui Z.Q., Chen Y.C., Zhao Y.Z., Hua Z.L., Liu X., Zhou C.L., 2013, Study of discrete element model for non-sphere particles base on super-quadrics, Chinese Journal of Computational Mechanics, 30, 854-859.
- 4. Deresiewicz H., 1968, A note on Hertz’s theory of impact, Acta Mechanica, 6, 110-112.
- 5. Favier J.F., Abbaspour-Fard M.H., Kremmer M., Raji A.O., 1999, Shape representation of axi-symmetrical, non-spherical particles in discrete element simulation using multi-element model particles, Engineering Computations, 16, 467-480.
- 6. Gui N., Yang X.T., Tu J.Y., Jiang S.Y., 2016, A generalized particle-to-wall collision model for non-spherical rigid particles, Advanced Powder Technology, 27, 154-163.
- 7. He S.M., Wu Y., 2008, Theoretical model on elastic-plastic granule impact, Engineering Mechanics, 25, 19-24.
- 8. Hőhner D., Wirtz S., Kruggel-Emden H., Scherer V., 2011, Comparison of the multi-sphere and polyhedral approach to simulate non-spherical particles within the discrete element method: influence on temporal force evolution for multiple contacts, Powder Technology, 208, 643-656.
- 9. Jackson R.L., Green I., 2005, A finite element study of elasto-plastic hemispherical contact against a rigid flat, Journal of Tribology, 127, 2, 343-354.
- 10. Kildashti K., Dong K.J., Samali B.J., Zheng Q., Yu A., 2018, Evaluation of contact force models for discrete modelling of ellipsoidal particles, Chemical Engineering Science, 177, 1-18.
- 11. Kim O.V., Dunn P.F., 2007, A microsphere-surface impact model for implementation in computational fluid dynamics, Journal of Aerosol Science, 38, 532-549.
- 12. Kodam M., Bharadwaj R., Curtis J., Hancock B., Wassgren C., 2009, Force model considerations for glued-sphere discrete element method simulations, Chemical Engineering Science, 64, 3466-3475.
- 13. Kruggel-Emden H., Rickelt S.,Wirtz S., Scherer V., 2008, A study on the validity of the multi-sphere discrete element method, Powder Technology, 188, 153-165.
- 14. Ning Z.M., 1995, Elasto-Plastic Impact of Fine Particles and Fragmentation of Small Agglomerates, The University of Aston in Birmingham.
- 15. Sommerfeld M., Huber N., 1999, Experimental analysis and modelling of particle-wall collisions, International Journal of Multiphase Flow, 25, 1457-1489.
- 16. Tabor D., 1951, The Hardness of Metals, Clarendon Press, Oxford.
- 17. Thornton C., 1997, Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres, Journal of Applied Mechanics, 64, 383-386.
- 18. Wang S.Q., Ji S.Y., 2018, Discrete element analysis of buffering capacity of non-spherical granular materials based on uper-quadric method, Acta Physica Sinica, 67, 182-193.
- 19. Wu C.Y., Thornton C., Li L.Y., 2003, Coefficients of restitution for elastoplastic oblique impacts, Advanced Powder Technology, 14, 435-448.
- 20. Wynn E.J.W., 2009, Simulations of rebound of an elastic ellipsoid colliding with a plane, Powder Technology, 196, 62-73.
- 21. You Y., Zhao Y.Z., 2018, Discrete element modelling of ellipsoidal particles using super-ellipsoids and multi-spheres: a comparative study, Powder Technology, 331, 179-191.
- 22. Yu K.H., Elghannay H., Tafti D., 2017, An impulse based model for spherical particle collisions with sliding and rolling, Powder Technology, 319, 102-116.
- 23. Yu K.H., Tafti D., 2016, Impact model for micrometer-sized sand particles, Powder Technology, 294, 11-21.
- 24. Yu K.H., Tafti D., 2019, Size and temperature dependent collision and deposition model for micron-sized sand particles, Journal of Turbomachinery, 141, 1-11.
- 25. Zhang X., Vu-Quoc L., 2002, Modeling the dependence of the coefficient of restitution on the impact velocity in elasto-plastic collisions, International Journal of Impact Engineering, 27, 317-341.
Uwagi
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bea0072c-6221-4d59-8c46-42f63f60e433