PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lidar observation of aerosol transformation in the atmospheric boundary layer above the Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Investigation results of a coarse and accumulation mode of aerosol properties above the Baltic Sea are reported. A most important role in the direct aerosol effect on climate have aerosols from the group of coarse and accumulation mode particles. Overseas in the atmosphere, there is a lot of aerosols from the fine fraction but their impact is not so important as coarse and accumulation mode particles. Sea spray emission from the sea surface takes place over a wide range of aerosol particle size distribution, it is also large in size range which are studying in this work (Lewis and Schwartz, 2004). The discussed range is most important in view of atmospheric optical properties, smaller particles do not have such an influence on scattering as particles from range 0.5–2 µm. The research was performed with a multiwavelength lidar. Due to the application of special software, the aerosol particle size distributions were retrieved from the lidar returns. That provided an opportunity to determine the profiles of the aerosol effective radius. We showed that the aerosol properties depend mainly on the direction of the air mass advection and the wind speed. The impact of the Baltic Sea on the aerosol size distribution is huge in the case of the advection from the open sea. Moreover, the aerosol effective radiuses in the whole boundary layer are much larger in the case of strong than for light wind. Our results suggest that the aerosol flux and the aerosol particle size distribution should be related to the wind speed in the emission function.
Czasopismo
Rocznik
Strony
238--246
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Applied Optics, Warsaw, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Department of Environmental Science, Stockholm University, Stockholm, Sweden
  • Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
Bibliografia
  • [1] Blanchard, D. C., 1954. Bursting of bubbles at an air-water interface. Nature 173 (4413) 1048-1048.
  • [2] Bodhaine, B. A., Wood, N. B., Dutton, E. G., Slusser, J. R., 1999. On Rayleigh Optical Depth Calculation. J. Atm. Ocean. Tech. 16, 1854-1861.
  • [3] Bohren, C. F., Huffmann, D. R., 2010. Absorption and scattering of light by small particles. Wiley-Interscience.
  • [4] Chomka, M., Petelski, T., 1997. Modelling the sea aerosol emission in the coastal zone. Oceanologia 39 (3), 211-225.
  • [5] Chudzyński, S., Karasiński, G., Skubiszak, W., Stacewicz, T., 2004. Simple polichromator for multi wavelength lidar. SPIE Proc. 5566, 1-4. https://doi.org/10.1117/12.577095.
  • [6] Cipriano, R. J., Blanchard, D. C., Hogan, A. W., Lala, G. G., 1983. On the Production of Aitken Nuclei from Breaking Waves and Their Role in the Atmosphere. J. Atmos. Sci. 40 (2), 469-478.
  • [7] de Leeuw, G., Andreas, E. L., Anguelova, M. D., Fairall, C. W., Lewis, E. R., O’Dowd, C., Schulz, M., Schwartz, S. E., 2011. Production flux of sea spray aerosol. Rev. Geophys. 49, RG2001. https://doi.org/10.1029/2010RG000349.
  • [8] Draxler, R. R., Rolph, G. D., 2010. HYSPLIT (Hybrid Single-particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website. NOAA Air Resources Laboratory, Silver Spring, MD. http://ready.arl.noaa.gov/HYSPLIT.php.
  • [9] Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., Van Dorland, R., 2007. Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge Univ. Press, Cambridge UK, New York, USA.
  • [10] GMAO, 2015. Global Modeling and Assimilation Office (GMAO)m MERRA-2 tavgM_2d_aer_Nx: 2d, Monthly mean, Time-averaged, Signal-Level, Assimilationm Aerosol Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: 10.5067/FH9A0MLJPC7N.
  • [11] Jagodnicka, A. K., Stacewicz, T., Karasiński, G., Posyniak, M., Malinowski, S. P., 2009. Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol. Appl. Optics 48, B8-B16. https://doi.org/10.1364/AO.48.0000B8.
  • [12] Kikas, Ü., Reinart, A., Pugatshova, A., Tamm, E., Ulevicius, V., 2008. Microphysical, chemical and optical aerosol properties in the Baltic Sea region. Atmos. Res. 90, 211-222. https://doi.org/10.1016/j.atmosres.2008.02.009.
  • [13] Kuśmierczyk-Michulec, J., 2009. Ångström coefficient as an indicator of the atmospheric aerosol type for a well-boundry layer: Part 1: Model development. Oceanologia 51 (1), 5-38. https://doi.org/10.5697/oc.51-1.005.
  • [14] Kuśmierczyk-Michulec, J., Marks, R., 2000. The influence of sea-salt aerosols on the atmospheric extinction over the Baltic and North Seas. J. Aerosol Sci. 31 (11), 1299-1316. https://doi.org/10.1016/S0021-8502(00)00032-X.
  • [15] Kuśmierczyk-Michulec, J., Rozwadowska, A., 1999. Seasonal changes of the aerosol optical thickness for the atmosphere over the Baltic Sea-preliminary results. Oceanologia 41 (2), 127-145.
  • [16] Lewandowska, A. U., Falkowska, L. M., 2013a. Sea salt in aerosols over the southern Baltic. Part 1. The generation and transportation of marine particles. Oceanologia 55 (2), 279-298. https://doi.org/10.5697/oc.55-2.279.
  • [17] Lewandowska, A. U., Falkowska, L. M., 2013b. Sea salt in aerosols over the southern Baltic. Part 2. The neutralizing properties of sea salt and ammonia. Oceanologia 55 (2), 299-318. https://doi.org/10.5697/oc.55-2.299.
  • [18] Lewis, E. R., Schwartz, S. E., 2004. Sea Salt Aerosol Production: Mechanism, Methods, Measurements and Models — A Critical Review. Geophys. Monogr. Ser. 152, 413 AGU, Washington.
  • [19] Lohmann, U., Feichter, J., 2005. Global Indirect Aerosol Effects: A Review. Atmos. Chem. Phys. 5, 715-737. https://doi.org/10.5194/acp-5-715-2005.
  • [20] Markuszewski, P., Klusek, Z., Nilsson, E. D., Petelski, T., 2020. Observations on relations between marine aerosol fluxes and surface-generated noise in the southern Baltic Sea. Oceanologia 62 (4), 413-427. https://doi.org/10.1016/j.oceano.2020.05.001.
  • [21] Massel, S. R., 2007. Ocean Waves Breaking And Marine Aerosol Fluxes. Atmospheric And Ocenaographic Sciences Library. https://doi.org/10.1017/Cbo9781107415324.004.
  • [22] Nadstazik, A., Marks, R., Schulz, M., 2000. Nitrogen species and macroelements in aerosols over the southern Baltic Sea. Oceanologia 42 (4), 411-424.
  • [23] Norris, S. J., Brooks, I. M., Hill, M. K., Brooks, B. J., Smith, M. H., Sproson, D. A. J., 2012. Eddy covariance measurements of the sea spray aerosol flux over the open ocean. J. Geophys. Res. 117, D07210. https://doi.org/10.1029/2011JD016549.
  • [24] Ovadnevaite, J., de Leeuw, G., Ceburnis, D., Monahan, C., Partanen, A. I., Korhonen, H., O’Dowd, C. D., 2014. A sea spray aerosol flux parameterization encapsulating wave state. Atmos. Chem. Phys. 14 (4), 1837. https://doi.org/10.5194/acp-14-1837-2014.
  • [25] Petelski, T., Chomka, M., 1996. Marine aerosol fluxes in the coastal zone — BAEX experimental data. Oceanologia 38 (4), 469-484.
  • [26] Petelski, T., Chomka, M., 2000. Sea salt emission in the coastal zone. Oceanologia 42 (4), 399-410.
  • [27] Petelski, T., Markuszewski, P., Makuch, P., Jankowski, A., Rozwadowska, A., 2014. Studies of vertical coarse aerosol fluxes in the boundary layer over the Baltic Sea. Oceanologia 56 (4), 697-710. https://doi.org/10.5697/oc.56-4.697.
  • [28] Petelski, T., Piskozub, J., Paplinska-Swerpel, B., 2005. Sea spray emission from the surface of the open Baltic Sea. J. Geophys. Res.-Oceans 110 (C10), C10023. https://doi.org/10.1029/2004JC002800.
  • [29] Petelski, T., 2003. Marine aerosol fluxes over open sea calculated from vertical concentration gradients. J. Aerosol Sci. 34 (3), 359-371. https://doi.org/10.1016/S0021-8502(02)00189-1.
  • [30] Plauškaitė, K., Špirkauskaitė, N., Byčenkienė, S., Kecorius, S., Jasinevičienė, D., Petelski, T., Zielinski, T., Andriejauskienė, J., Barisevičiūtė, R., Garbaras, A., Makuch, P., Duboitis, V., Ulevicius, V., 2017. Characterization of aerosol particles over the southern and South-Eastern Baltic Sea. Mar. Chem. 190, 13-27. https://doi.org/10.1016/j.marchem.2017.01.003.
  • [31] Posyniak, M., Malinowski, S. P., Stacewicz, T., Markowicz, K. M., Zieliński, T., Petelski, T., Makuch, P., 2011. Multiwavelength micropulse lidar in atmospheric aerosol study — signal processing. Proc. SPIE 8182, 818216-818226.
  • [32] Posyniak, M., Stacewicz, T., Miernecki, M., Jagodnicka, A. K., Malinowski, S. P., 2010. Multiwavelength micropulse lidar for atmospheric aerosol investigation. Opt. Appl. 40 (3), 601-608.
  • [33] Resch, F. J., Darrozes, S. J., Afeti, G. M., 1986. Marine liquid aerosol production from bursting of air bubbles. J. Geophys. Res. 91, 1019-1029. https://doi.org/10.1029/JC091iC01p01019.
  • [34] Seinfeld, J. H., Pandis, S. N., 1997. Atmospheric Chemistry and Physics. John Wiley & Sons, New York.
  • [35] Sitarek, S., Stacewicz, T., Posyniak, M., 2016. Software for retrieval of aerosol particle size distribution from multiwavelength lidar signals. Comput. Phys. Commun. 199, 53-60. https://doi.org/10.1016/j.cpc.2015.08.024.
  • [36] Spiel, D. E., 1997a. A hypothesis concerning the peak in film drop production as function of bubble size. J. Geophys. Res. 102 (C1), 1153-1161. https://doi.org/10.1029/96JC03069.
  • [37] Spiel, D. E., 1997b. More on the birth jet drops from bubbles bursting on seawater surface. J. Geophys. Res. 102 (C3), 5815-5821. https://doi.org/10.1029/96JC03582.
  • [38] Spiel, D. E., 1998. On the birth film drops from bubbles bursting on seawater surface. J. Geophys. Res. 103 (C11), 24907-24918. https://doi.org/10.1029/98JC02233.
  • [39] Spiel, D. E., 1995. On the birth jet drops from bubbles bursting on seawater surface. J. Geophys. Res. 100 (C3), 4995-5006. https://doi.org/10.1029/94JC03055.
  • [40] Spiel, D. E., 1994. The number and size of jet drops produced by air bubbles bursting at a water surface. J. Geophys. Res. 99 (C5), 10289-10296. https://doi.org/10.1029/94JC00382.
  • [41] Stelmaszczyk, K., Dell’Aglio, M., Chudzyński, S., Stacewicz, T., Wöste, L., 2005. Analytical function for lidar geometrical compression form-factor calculations. Appl. Optics 44 (7), 1323-1331. https://doi.org/10.1364/AO.44.001323.
  • [42] Stevens, B., Feingold, G., 2009. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461, 607-613. https://doi.org/10.1038/nature08281.
  • [43] Streets, D. G., Wu, Y., Chin, M., 2006. Two-Decadal Aerosol Trends as A Likely Explanation of The Global Dimming/Brightening Transition. Geophys. Res. Lett. 33 (15), L15806. https://doi.org/10.1029/2006GL026471.
  • [44] Tao, W. K., Chen, J. P., Li, Z., Wang, C., Zhang, C., 2012. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 50, RG2001. https://doi.org/10.1029/2011RG000369.
  • [45] Twomey, S., 1977. The Influence of Pollution on the Shortwave Albedo of Clouds. J. Atmos. Sci. 34, 1149-1152. https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.
  • [46] Wood, R., Wyant, M., Bretherton, Ch. S., Rémillard, J., Kollias, P., Fletcher, J., Stemmler, J., de Szoeke, S., Yuter, S., Miller, M., Mechem, D., Tselioudis, G., Chiu, J. Ch., Mann, J. A. L., O’Connor, E. J., Hogan, R. J., Dong, X, Miller, M., Ghate, V., Jefferson, A., Min, Q., Minnis, P., Palikonda, R., Albrecht, B., Luke, E., Hannay, C., Lin, Y., 2015. Clouds, aerosol, and precipitation in the marine boundary layer: An ARM mobile facility deployment. B. Am. Meteorol. Soc. 96, 419-440. https://doi.org/10.1175/BAMS-D-13-00180.1.
  • [47] Zdun, A., Rozwadowska, A., Kratzer, S., 2011. Seasonal variability in the optical properties of Baltic aerosols. Oceanologia 53 (1), 7-34. https://doi.org/10.5697/oc.53-1.007.
  • [48] Zdun, A., Rozwadowska, A., Kratzer, S., 2016. The impact of air mass advection on aerosol optical properties over Gotland (Baltic Sea). Atmos. Res. 182, 142-155. https://doi.org/10.1016/j.atmosres.2016.07.022.
  • [49] Zieliński, T., 2004. Studies of aerosol physical properties in coastal areas. Aerosol Sci. Tech. 38 (5), 513-524. https://doi.org/10.1080/02786820490466738.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be9f3dd1-de13-4927-bb3d-2a17bdbc904c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.