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 Abstract 
The design of experiment (DoE) is a methodology originated from early 1920s when Fisher’s papers 
created the analysis of variance and first known experimental designs: latin squares. It is focused on 
a construction of empirical models based on measurements obtained from specifically structured and 
driven experiments. Its development resulted in the constitution of four distinctive branches recog-
nized by the industry: factorials (full or fractional), Taguchi’s robust design, Shainin’s Red-X® and a 
response surface methodology (RSM). On one hand, the well-known success stories of this method-
ology implementations promise great benefits, while on other hand, the mathematical complexity of 
mathematical and statistical assumptions very often lead to improper use and wrong inferences. The 
possible solution to avoid such mistakes is the expert system supporting the design of experiments 
and subsequently the analysis of obtained data. The authors propose the outline of such system and 
provides the general analysis of the ontology and related inference rules.  
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1. Introduction 

The methodology known as ‘design of experiment’ is very 
efficient tool for discovering new knowledge about techno-
logical processes as well as fine tuning them. Unfortunately, 
this tool set contains many methods which achieve their 
maximum efficiency for different problems and at different 
assumptions. In recent decades, software tools (e.g. Statisti-
ca, Statgraphics, Minitab, R) have freed engineers and re-
searchers from tedious calculation work. However, it is still 
the user who is responsible for selection of the right experi-
mental design and appropriate data analysis methods, espe-
cially so sophisticated as logistic regression models (Hosmer 
and Lemeshow, 2000; Hilbe, 2009), a categorical data analy-
sis (Agresti, 2002), a principal component analysis PCA 
(Jolliffe, 2010), a cluster analysis (Everitt et al., 2011) or – 
last but not least – a multivariate statistical techniques at all 
(Izenman, 2008). 

The rapid development in a specific field of an artificial 
intelligence – expert systems (Liebowitz, 1998; Jackson, 
1999; Siler and Buckley, 2005) – gives a hope for further 
relief of users. The advisory expert system appears to be a 
proper tool to support users in these very difficult and risky 

decisions. In this paper, authors try to sketch outline of the 
rules set for such a system. 

Another promising area – linguistic summarization 
(Niewiadomski, 2008) – appears to be desirable tool for 
a valid results interpretation and automatic creation of con-
densed, transparent, but not necessarily precise, interpreta-
tions of large result datasets, however such problem is be-
yond a scope of this paper. 

In the next chapters, authors make a review of the most 
popular methods existing under the franchise of ‘design of 
experiment’ banner. 

2. Review and analysis of popular methods 

The authors chose several methods that were considered 
the most popular among DOE techniques: Latin squares, 
factorials, Taguchi robust design, Shainin’s Red-X® and 
response surface methodology. 

2.1. Latin squares - beginnings 

The design of experiments foundations were created in 
1918, when R. A. Fisher published his paper (Fisher, 1918) 
where the analysis of variance (ANOVA) (Gentle and 
Hardle, 2012) was mentioned first time as a method to split 
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a combined effect into separated impacts of particular fac-
tors. Some years later, in 1925, Fisher found an answer 
(Fisher, 1925) to the question being a specific “inverse-
problem”: how to set a scheme of the experiment to make 
ANOVA maximally effective. The founded scheme is known 
as a “Latin square” (LS) because of its special construction 
diagram similar to a “magic square” filled with a Latin letters 
(Fig.1). This diagram should be interpreted as: 
 the column of the diagram is a first factor and the num-

ber of the column is its level, 
 the row of the diagram is a second factor and the number 

of the row is its level, 
 the Latin letter set at a cross of the column and the row 

is a level of the third factor. 
For the example (Fig.1): the third column, the second row 
and the letter ‘B’ – it means that the first factor is set at third 
level, the second factor – at second level and third factor – at 
second level (i.e. at letter ‘B’). The Latin square constructed 
for n levels is 1/nth of the full experimental design i.e. it is 
a small fraction from the set of all possible combinations of 
factors. 
 

A B C D

D A B C

C D A B

B C D A
 

Fig. 1. The sample latin square for three factors  
with four levels each 

However Latin squares allow to serve any arbitrary num-
ber of levels, their impose some limitations: 
 only three factors may be analyzed, 
 the number of levels must be the same for all factors, 
 no interactions between factors are allowed. 
Later, in 1935 Fisher published a book (Fisher, 1935) where 
the term ‘design of experiment’ was explicitly used even in 
the title. 

2.2. Factorials 

The concept of Latin squares were generalized into ‘gen-
eral full factorial’ (GFF) experimental design. The GFF is a 
combination of all levels of considered factor with all levels 
of all other factors. The GFF has very good statistical proper-
ties and a capacity to identify all linear effects and all possi-
ble interactions up to the highest possible order however it is 
the most expensive variant of an experimental research. 

In 1935, F. Yates found a way out this impasse. He pro-
posed (Yates, 1935) the recipe how to greatly reduce the 
number of the required experiments. He reversed the state-
ment “if GFF is used then all effects and interactions are 
identifiable” into “if higher order interactions are removed 

from the model then only some combinations of factor treat-
ments should be used”. Such subset of GFF is known as the 
fractional factorial where the term ‘fractional’ is related to 
the fragmentary in contrary to the whole experimental de-
sign. 

He might to make such radical decision about removing of 
the higher order interactions at a relatively low risk because 
they are very rarely observed in the real industrial processes, 
especially in machining. The only exceptions are  chemical 
and termomechanical processes. 

Additionally, Yates described the effective algorithm 
(Montgomery, 2008) to construct the fractional factorial in 
the specific case where all factors have only two level set-
tings. It is very often met, especially when sensitivity of the 
technological process is investigated at preliminary research. 

The first step is to determine the biggest two-level full fac-
torial which size is still lower than assumed limit determined 
by the economy or deadline limitations. The founded exper-
imental design is assumed as a core while interactions of 
sup-ported factors are used to generated the rest of the fac-
tors.  

The following example describe this procedure for the 
searching of the smallest fractional factorial supporting only 
linear effects: 
 the process with four factors (A, B, C, D) should be 

investigated, 
 the economy limitations does not allow to make more 

than 10 experimental tests, 
 two-level fractional factorial should be proposed. 

The test number limitations (i.e. 10) imposes that the big-
gest two-level full factorial in this limit is 23 i.e. full factorial 
(Fig.2a) for three factors (acronyms according to well-known 
Yates’s notation). 

 
a)

A B C

- - -

+ - -

- + -

+ + -

- - +

+ - +

- + +

+ - +
 

b)
A B C D

- - - -

+ - - +

- + - +

+ + - -

- - + +

+ - + -

- + + -

+ - + -

Fig. 2. Sample two-level full factorial for three factors (a) as 
a core for the two-level fractional factorial (b) with generator 

D=ABC 
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Three factors allows four interactions: three second-order 
i.e. AB, AC, BC and one third-order i.e. ABC. In the particu-
lar sample (Fig.2b) the interactions ABC was used as a gen-
erator for the fourth factor D. 

Such experimental design may be used to determine the 
sensitivity of the process onto the investigated factors. The 
typical graphical tool used to present this sensitivity is well-
known Pareto chart. 

In 1946, Plackett and Burman showed (Plackett and Bur-
man, 1946) a special kind of two-level experimental designs 
based on Hadamard matrices with linear complexity instead 
of a power complexity in Yates’s designs. 

2.3. Taguchi’s robust design 

Taguchi robust design (Phadke, 1989) is not only the spe-
cific variant of DoE, but also a general idea of a process or 
product design insensitive to disturbances. His main concept 
is to introduce two separate experimental design: one, con-
trolling significant factors of the process or product (known 
as the internal array) and the second, (known as the external 
array), controlling most significant disturbances or weakly 
controlled factors (known as noise factors). The aim of the 
procedure is to find settings of the controlled factors which 
simultaneously optimize (maximize, minimize or stabilize) 
the process outcome and maximize a resistance of the pro-
cess to the influence of noise factors. 

The internal array may be a special orthogonal experi-
mental design (prepared by Taguchi) with different number 
of levels for each of factors, or typical factorial – full or 
fractional – experimental design. 

The external array is usually highly fractionalized two-
level fractional factorial, where levels are related to extreme 
settings of noise factors e.g. the lowest or highest tempera-
ture, humidity, vibrations etc. 

Both arrays are crossed giving the complete Taguchi ro-
bust design (Fig. 3). 

E ‐ ‐ + +

D ‐ + ‐ +

A B C

‐ ‐ +

+ ‐ ‐

‐ + ‐

+ + +

Fig. 3. Combinations of two crossed experimental designs in 
Taguchi robust design: the internal array (A,B,C) and the ex-
ternal array (D,E). The green box is a sample test with con-

trolled factors (A,B,C) set to (+, –, –) and noise factors (D, E) 
set to (–, +) 

Testing of disturbances may be conducted simultaneously 
with factors or separately. The first case appears when noise 
factors imposes production process directly e.g. raw materi-
als instability, process drift etc. The second case is con-

ducted when noise factors are shifted over time in relation to 
the main process e.g. test in a climatic chamber for impact of 
operating conditions. 

Each of the internal array treatment should be replicated 
for all of the external array treatments. It means that number 
of the required tests is a multiplication of the internal array 
treatments and the external array treatments. To avoid rela-
tively high level of cost, the external array is typically select-
ed as highly fractionalized two-level factorial while the in-
ternal array is selected as fractional factorial (with more than 
two levels) or a specific design prepared by Taguchi and 
known as Taguchi orthogonal arrays (Phadke, 1989). 

The analyzed output is not the measurements directly, but 
their specific transformation SNR (Signal-to-Noise Ratio) 
made with one of three available functions: 
 lower-the-better (Eq.1) – where the sum is evaluated for 

the particular internal treatment i over all (1…k) external 
treatments j 

2
,

1

1
10 log

k

i i j
j

SNR y
n 

 
   

 
  (1) 

 greater-the-better (Eq.2) – where the sum is evaluated 
for the particular internal treatment i over all (1…k) ex-
ternal treatments j 

2
1 ,

1 1
10 log

k

i
j i j

SNR
n y

 
   

  
  (2) 

 nominal-the-best – where two variants are considered 
depending on the relation between the main outcome 
and its variance over disturbance (Eq.3): (a) linear rela-
tion (Eq.4) and (b) lack of the relation (Eq.5) 
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Their names describes the goal selected for the original 
output while the trans-formed SNR is always maximized. 
One SNR value is calculated for each of the internal array 
treatment over all of the related external arrays treatments 
(Phadke, 1989; Montgomery, 1997). 

Instead of the classic factorials, the robust design optimizes 
not the sole out-come at random disturbances, but the out-
come at the average existence of the extremely changing 
disturbances. It may lead to the results that are slightly sub-
optimal than obtained from factorials experiments, but are 
significantly more insensitive to the disturbances. 
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The limitations of the Taguchi’s robust design is lack of 
the any interactions detection. The typical graphical tool used 
to select optimal settings is the margin-al means plot (Mont-
gomery, 1997). 

2.4. Shainin’s Red-X® 

Shainin’s Red-X® methodology (Bhote, 1991) is not a sin-
gle algorithm but a set of seven recipes what make it very 
similar to Six-Sigma package. It goal is not to optimize 
a process outcome itself but to minimize its variability i.e. to 
make process window narrower. Its basic foundation is the 
assumption that small number of factors (up to maximum 
three) are responsible for the main part of disturbance ob-
served in the process. 

The approach was originally introduced in Grumman Air-
craft Engineering Corporation during construction of Lunar 
Expedition Module in Apollo mission, where Dorian Shainin 
was responsible for the production process quality. Later, 
Shainin moved to General Motors and implemented his pro-
cedure in the automotive industry. 

The first step in Shainin’s Red-X® is to set a measurement 
system i.e. to gain assurance that measurement procedure has 
a capacity to really obtain reliable data and not artifacts. In 
modern advanced factories, it is usually provided by a meas-
urement system analysis (MSA) but it still very often is not 
met. In such situation, Shainin’s system provides a MSA 
substitute i.e. ISO Plot® where 30 product samples are two 
times measured and obtained data are paired. The measure-
ment are presented on the 2D plot and the horizontal disper-
sion is a process dispersions while the dispersion around 
slope (line 45 degree) is a measurement dispersion and re-
flects measurement process repeatability. 

The optional second step is Multi-Vari® analysis per-
formed with a specific control charts used to detect a location 
of the process disturbance: (a) raw material or machined part, 
(b) production site or tool and (c) production site environ-
ment. 

Next step depends on the character of the analyzed ob-
ject/process. If the investigated object is a product allowing 
reversible dismantling i.e. dismantling and reassembly, the 
ComponentSearch® algorithm is used. If the investigated 
object does not allow reversible dismantling i.e. the disman-
tling and the inspection is destructive, the PairedCompari-
son® algorithm is used. At last, if a process (instead of 
a material object) is investigated then VariableSearch® 
(structurally very similar to ComponentSearch®) is used.  

The result of this step is a set of the main sources of varia-
bility: Red-X® (the main source), Pink-X® (the second order 
source) and Pale Pink-X® (the third order source). 

In the next step, FullFactorial®, the possible interactions 
between these main source are detected and evaluated. If 
interactions are not significant, the optimum settings are 
detected for each of factors independently. If any interaction 
is more significant than a linear effect (single factor), it 
means that an optimum pair or an optimum triplet should be 
determined at the same time i.e. their settings depend mutual-
ly on each other. 

Finally, the B vs. C® algorithm, based on Tukey’s range 
significance test (Siegel and Tukey, 1960), checks if the new 
optimum settings changes product/process so enough to be 
detected. 

Optional step, based on dispersion plots of the measured 
process outcome versus Red-X® and Pink-X®, allows to 
determine reasonable and argued specification of raw materi-
als and source parts. 

The specific property of Shainin’s Red-X® approach is to 
almost completely avoid of any explicit use of the statistics. 
The base tools for this approach are a millimeter paper, 
a setsquare, a pencil and a four-function calculator. The nec-
essary statistics are hidden beyond “magic” number located 
explicitly in the some simple formulas. Due to its simplicity 
and a low cost, Shainin’s approach is very popular in the 
industry. 

2.5. Response Surface Methodology 

The response surface methodology (RSM) was developed 
in 1951 by Box and Wilson (Box and Wilson, 1951). In con-
trary to the factorial approach, it allows to use continuous 
factors settings i.e. settings described by a numbers, not 
a labels. Instead of a fixed-effects model (like Latin square, 
Taguchi or factorials), it introduced a classic mathematical 
approximation formulas based usually on a second order 
polynomials. In 1958, Scheffé generalized this approach to 
a specific situation of mixtures where a sum of factors setting 
must to be constant (Scheffé, 1958). 

Typically, a RSM model is identified by a least square 
method providing a maximum likelihood estimation if the 
noise term is Gaussian (Montgomery, 2008). This condition 
may be a priori checked very rarely and this assumption is 
typically tested a posteriori by a normality test of residuals 
(John, 1998). 

Typical exploration tools are: the analysis of effects, the 
analysis of variance, the inspection of the pure error, 2D and 
3D plots. 

The RSM is very popular however authors practically ob-
served many of improper use cases and inference mistakes. 
The typical error is ignoring a specific statistical assumptions 
related to a particular experimental design. It very often lead 
to an erroneous conclusions. 

3. Selection rules 

The scope of the investigation is theoretically a results of 
the assumed goal, but in the industrial practice, the most 
important limitations are economical i.e. available funds and 
imposed deadlines. They most strongly limit tools and meth-
ods which may be used. 

The question addressed to the expert system may be for-
mulated in two forms: 
1. what are necessary resources (funds, machines, workers, 

time) for the defined scope of the investigation, 
2. what is maximum available scope of the investigation for 

the defined limits of the resources (funds, machines, 
workers, time). 
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In the academy, the first approach is often met when a fu-
ture research grant is considered. In the industrial practice, 
especially in production engineering, the second approach is 
the only allowed one. 

3.1. Resource limitations 

In the beginning, two basic properties of the single exper-
imental test have to be considered: a cost Ctest and a duration 
Ttest. 

In the industrial approach, the budget Blimit and deadline 
Tlimit are strictly de-fined. The maximum number of tests 
limited by a budget is defined by an equation: 

limit
budget

test

B
N

C
  (6) 

while the maximum number of tests possible to made on a 
single experimental unit is defined by a formula: 

limit
time

test

T
N

T
  (7) 

If the Nbudget is larger than Ntime, it means that experimental 
tests may be distributed on many experimental units simulta-
neously however it requires to introduce a special blocking 
factor to take into account a systematic error i.e. drift or 
constant differences between experimental units. 

3.2. Selection of the investigation aim 

The observed outcome Y should be defined. The DoE in-
vestigation should select one of the four possible goals relat-
ed to this outcome: 
1. the identification of the most important factors (screening 

research), 
2. the process stabilization i.e. narrowing of the process win-

dow, 
3. the process optimization i.e. searching of the process op-

timum settings, 
4. the process mapping i.e. construction of the process pre-

diction model. 
The possible rules are: 
1. if the goal is screening then possible approaches are facto-

rial (fractional, Plackett-Burman) or Shainin’s, 
2. if the goal is stabilization then possible approaches are 

Shainin’s, fractional factorial or RSM, 
3. if the goal is optimization then possible approaches are 

factorial, Taguchi or RSM, 
4. if the goal is mapping then possible approaches are facto-

rial or RSM. 
In the industrial practice, the stabilization should be achieved 
first even before optimization. 

3.3. Selection of investigated factors 

It leads to selection of the factors related to the observed 
outcome. The settings nature of the factors determined the 
possible methodology:  

1. if the factors are continuously set and the constant sum 
must be met, they should be investigated by mixture oth-
erwise 

2. if the factors are continuously set, they should be investi-
gated by RSM, other-wise 

3. it should be investigated by factorials, Taguchi’s or Shain-
in’s approach. 

A special trick, an arbitrary discretization, may be used to 
transform factors from continuous into not-continuous set. 

3.4. Possibility of interactions and the model 
selection 

The n-order interactions is a mathematical term for a phe-
nomenon where observed impact of the particular factor 
depends on (n–1) other factors settings. Some approaches 
a priori reject the existence of interactions. It means that 
such approaches should not be used for the investigation of 
the processes where investigations may be met: 
1. if the interactions may be met, then do not use Taguchi, 

Plackett-Burman, linear factorials or linear RSM other-
wise 

2. use factorials with non-linear models, Shainin’s or RSM 
with non-linear models. 

3.5 Outcome transformations 

The observed and measured outcome may related to one of 
three numbering scales defined by Stevens (Stevens, 1946): 
 interval scale, where the value is not limited i.e. may be 

negative or positive, 
 ratio scale, where the value is one-sided bound, typically 

it means that the value is positive or non-negative, 
 absolute scale, where the value is two-sided bound. 

In the most popular least squares method, the random noise 
term describing uncontrolled disturbances is assumed to be 
Gaussian i.e. normally distributed. It requires unlimited (at 
least theoretically) outcome, both in negative and positive 
side. If the outcome is one-side or two-side bound, it requires 
preliminary transformation: 
1. if the outcome is one-side bound, then all values should be 

shifted into positives and next processed by a special 
transformation into the whole real numbers space, other-
wise 

2. if the outcome is two-sided bound, then all values should 
be shifted and scaled into interval [0, 1] and next pro-
cessed by a special transformation into the whole real 
numbers space otherwise 

3. the outcome should be left intact. 
The typical transformation of the outcome related to the 

ratio scale is logarithmic transformation. It transforms zero 
bound into negative infinity, one into zero and larger values 
into positive values up to positive infinity. 

The typical transformations of the outcome related to the 
absolute scale are logistic (Hosmer and Lemeshow, 2000) or 
probit transformations (Hosmer and Lemeshow, 2000). 
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4 Conclusions 

The rationale for the construction of the expert system for 
the design of the experiment was presented. The history roots 
of DoE and its developing into four main branches was 
showed. Five groups of selection rules were defined: the re-
source limitations, the selection of the investigation aim, the 
selection of the investigated factors, the model selection 
according to existence of interactions and the outcome pre-
processing transformations. 

Further efforts will be focused on the testing of the work-
ing model in the industrial environment and building rules 
related to the analysis methods and results interpretations. 
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实验设计专家系统概述 
 

關鍵詞 

专业系统 

实验设计 

阶乘 

Taguchi坚固的设计 

RSM 

 摘要 

实验设计（DoE）是一种起源于20世纪20年代早期的方法，当时Fisher的论文创建了方差分析

和第一个已知的实验设计：拉丁方块。它侧重于基于从特定结构和驱动实验获得的测量结果的

经验模型的构建。它的发展导致了该行业认可的四个独特分支的构成：阶乘（全部或分数），

田口的稳健设计，Shainin的RedX®和响应表面方法（RSM）。一方面，这种方法实现的众所周

知的成功案例有很大的好处，而另一方面，数学和统计假设的数学复杂性经常导致不正确的使

用和错误的推论。避免此类错误的可能解决方案是支持实验设计的专家系统，并随后对获得的

数据进行分析。作者提出了这种系统的概述，并提供了对本体和相关推理规则的一般分析。 

 

 


