Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study presents a new concept of a deployable footbridge. The structural solution of the proposed footbridge comprises two parallel deployable beams as main girders and wooden boards which constitute the deck. The two beams were composed by several softwood blocks bonded to a unidirectional carbon fiber sheets layers by using an epoxy resin. In the first part of this study; we present the principle of the developed deployable footbridge. Thereafter, small-scale section prototype of the footbridge was tested under a vertical static nondestructive load on the Serviceability Limit State. The purpose of the tests is mainly to evaluate the vertical displacement responses under the static load, in every location of the prototype deck. The second purpose of these tests is to verify the deployment of the footbridge. Finally, a theoretical model based on the classical beam theory and on the theoretical structural behavior of the deployable beams was developed. The model presents the theoretical relationship between the load and the vertical displacement, under static loads, in every point of the footbridge. The predicted and the experimental results show a good agreement.
Czasopismo
Rocznik
Tom
Strony
293--306
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
- Université Tunis El Manar, Ecole Nationale d'Ingénieurs de Tunis, Laboratoire de génie civil, BP 37, Tunis Belvédère 1002, Tunisia
- Institut supérieur des études technologiques de Sfax, Route de Mahdia, km 2.5, BP 88, El Bustan, Sfax 3099, Tunisia
autor
- Université Tunis El Manar, Ecole Nationale d'Ingénieurs de Tunis, Laboratoire de génie civil, BP 37, Tunis Belvédère 1002, Tunisia
autor
- Université Tunis El Manar, Ecole Nationale d'Ingénieurs de Tunis, Laboratoire de génie civil, BP 37, Tunis Belvédère 1002, Tunisia
Bibliografia
- [1] C. Gantes, J.J. Connor, R.D. Logcher, Combining numerical analysis and engineering judgment to design deployable structures, Computers & Structures 40 (2) (1991) 431–440.
- [2] N.M. Nor, V. Devarase, M. Azani Yahya, S. Sojipto, S.K.C. Osmi, Fiber reinforced polymer (FRP) portable bridge: modeling and simulation, European Journal of Scientific Research 44 (3) (2010) 437–448.
- [3] K.K. Rahul, Design and optimization of portable foot bridge, Procedia Engineering 97 (2014) 1041–1048.
- [4] G. Sedlacek, H. Trumpf, U. Castrischer, Development of a light-weight emergency bridge, Structural Engineering International 14 (4) (2004) 282–287.
- [5] A.P. Thrall, S. Adriaenssens, S.I. Paya-Zaforteza, T.P. Zoli, Linkage-based movable bridges: design methodology and three novel forms, Engineering Structures 37 (2012) 214–222.
- [6] M. Wallner-Novak, M. Pircher, Kinematics of movable bridges, Journal of Bridge Engineering 12 (2) (2007) 147–153.
- [7] J. Aversenga, J.F. Dubé, Design, analysis and self stress setting of a lightweight deployable tensegrity modular structure, Procedia Engineering 40 (2012) 14–19.
- [8] I. Ario, M. Nakazawa, Y. Tanaka, I. Tanikura, S. Ono, Development of a prototype deployable bridge based on origami skill, Automation in Construction 32 (2013) 104–111.
- [9] A.M.A.J. Teixeira, M.S. Pfeil, R.C. Battista, Structural evaluation of a GFRP truss girder for a deployable bridge, Composite Structures 110 (2014) 29–38.
- [10] M.S. Pfeil, A.M.A.J. Teixeira, R.C. Battista, Experimental tests on GFRP truss modules for dismountable bridges, Composite Structures 89 (2009) 70–76.
- [11] N. Bel Hadj Ali, L. Rhode-Barbrigos, A.A.P. Albi, I.F.C. Smith, Design optimization and dynamic analysis of a tensegrity-based footbridge, Engineering Structures 32 (11) (2010) 3650– 3659.
- [12] L. Rhode-Barbarigos, N. Bel Hadj Ali, R. Motro, I.F.C. Smith, Designing tensegrity modules for pedestrian bridges, Engineering Structures 32 (2012) 1158–1167.
- [13] D. Zhang, Q. Zhao, Y. Huang, F. Li, H. Chen, D. Miao, Flexural properties of a lightweight hybrid FRP-aluminum modular space truss bridge system, Composite Structures 108 (2014) 600–615.
- [14] O. Benjeddou, O. Limam, M. Ben Ouezdou, Experimental and theoretical study of a deployable composite beam, Engineering Structures 44 (2012) 312–322.
- [15] J. Zhao, T. Liu, Y. Wang, Static test analysis of a bridge structure in civil engineering, Systems Engineering Procedia 1 (2011) 10–15.
- [16] Sikadur 330, N89.97, Version N8 2011-025, 2011.
- [17] J. Porteous, A. Kermani, Structural Timber Design to Eurocode 5, Blackwell Publishing, 2007.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be9c154d-84da-46e0-8352-03b162240764