PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exergy based analysis of solar air heater duct with W-shaped rib roughness on the absorber plate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Exergy analysis is a powerful thermodynamic tool and it helps in computing the actual output of a system. It helps the researchers to optimize the roughened solar air heater design to compensate the present and also the future needs. In this study, investigation on exergetic performance evaluation of a solar air heater with W-shaped roughened absorber surface analytically by employing mathematical model and the results obtained are compared with smooth plate solar air heater under same operating conditions. The exergetic efficiency curves has been plotted as a function of different values of Reynolds number and temperature rise parameter for different roughness parameters. The maximum augmentation in the exergetic efficiency of the solar air heater with W-shaped roughened surface as compared to solar air heater with smooth surface has been obtained as 51% corresponding to the relative roughness height of 0.03375 and the rib angle of attack about 60°. Based on the exergetic efficiency the suitable design parameters of solar air heater with W-shaped roughened are determined.
Rocznik
Strony
21--48
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr., wz.
Twórcy
  • Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal 462051, Madhya Pradesh, India
  • Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal 462051, Madhya Pradesh, India
Bibliografia
  • [1] Twidell J., Weir T.: Renewable Energy Sources. Taylor & Francis e-Library, 2006.
  • [2] Prasad K, Mullick S.C.: Heat transfer characteristics of a solar air heater used for drying purposes. Appl. Energy 13(1983), 2, 83–93.
  • [3] Prasad B.N., Saini J.S.: Effect of artificial roughness on heat transfer and friction factor in a solar air heater. Sol. Energy 41(1988), 6, 555–560.
  • [4] Gupta D, Solanki S.C., Saini J.S.: Heat and fluid flow in rectangular solar air heater ducts having transverse rib roughness on absorber plates. Sol. Energy 51(1993); 1, 31–37.
  • [5] Saini R.P., Saini J.S.: Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element. Int. J. Heat Mass Tran. 40(1997), 4, 973–986.
  • [6] Verma S.K., Prasad B.N.: Investigation for the optimal thermohydraulic performance of artificially roughened solar air heaters. Renew. Energ. 20(2000), 1, 19–36.
  • [7] Karwa R., Solanki S.C., Saini J.S.: Heat transfer coefficient and friction factor correlations for the transitional flow regime in rib-roughened rectangular ducts. Int. J. Heat Mass Tran. 42(1999); 9, 1597–1615.
  • [8] Bhagoria J.L., Saini J.S., Solanki S.C.: Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate. Renew. Energ. 25(2002), 3, 341–369.
  • [9] Momin A.M., Saini J.S., Solanki S.C.: Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate. Int. J. Heat Mass Tran. 45(2002), 16, 3383–3396.
  • [10] Karwa R.: Experimental studies of augmented heat transfer and friction in asymmetrically heated rectangular ducts with ribs on the heated wall in transverse, inclined, V-continuous and V-discrete pattern. Int. Comm. Heat Mass Tran. 30(2003), 2, 241–250.
  • [11] Sahu M.M., Bhagoria J.L.: Augmentation of heat transfer coefficient by using 90 broken transverse ribs on absorber plate of solar air heater. Renew. Energy 30(2005), 13, 2057–2073.
  • [12] Jaurker A.R., Saini J.S., Gandhi B.K.: Heat transfer and friction characteristics of rectangular solar air heater duct using rig-grooved artificial roughness. Solar Energy 80(2006), 8, 895–907.
  • [13] Karmare S.V., Tikekar A.N.: Heat transfer and friction factor correlation forartificially roughened duct with metal grit ribs. Int. J. Heat Mass Tran. 50(2007), 21-22, 4342–4351.
  • [14] Layek A., Saini J.S., Solanki S.C.: Heat transfer and friction characteristics for artificially roughened ducts with compound turbulators. Int. J. Heat Mass Tran. 50(2007), 23-24, 4845–4854.
  • [15] Aharwal K.R., Gandhi B.K., Saini J.S.: Experimental investigation on heat transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renew. Energ. 33(2008), 4, 585–596.
  • [16] Varun, Saini R.P., Singal S.K.: Investigation of thermal performance of solar air heater having roughness elements as a combination of inclined and transverse ribs on the absorber plate. Renew. Energ. 33(2008), 6, 1398–1405.
  • [17] Singh S., Chander S., Saini J.S.: Heat transfer and friction factor of discrete V-down rib roughened solar air heater ducts. J. Renew. Sustain. Ener. 3(2011), 1, 013108-1–17 .
  • [18] Mittal M.K., Saini R.P., Varun, Singal S.K.: Effective efficiency of solar air heaters having different types of roughness elements on the absorber plate. Energy 32(2007), 739–745.
  • [19] Layek A., Saini J.S., Solanki S.C.: Second law optimization of a solar air heater having chamfered rib-groove roughness on absorber plate. Renew. Energ. 32(2007), 1967–1980.
  • [20] Bejan A.: Advanced Engineering Thermodynamics. Wiley Interscience, 1988.
  • [21] Fujiwara M.: Exergy analysis for the performance of solar collectors. J. Sol. Energy Eng. 105(1983), 163–167.
  • [22] Said S.A.M., Zubair S.M.: On second-law efficiency of solar collectors. J. Sol. Eng. 115(1993), 1, 2–4.
  • [23] Binark A.K.: Exergy analysis for the solar air collectors. In: Proc. Int. Conf. on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems, Istanbul, 11–14, July 1995, 539–544.
  • [24] Rosen M.A.: Second law analysis: approaches and implications. Int. J. Energ. Res. 23(1999), 5, 415–429.
  • [25] Kurtbas I., Durmuş A.: Efficiency and exergy analysis of a new solar air heater. Renew. Energ. 29(2004), 9, 1489–501.
  • [26] Öztürk H.H.: Experimental determination of energy and exergy efficiency of the solar parabolic-cooker. Solar Energy 77(2004), 1, 67–71.
  • [27] Gupta M.K., Kaushik S.C.: Exergetic performance evaluation and parametric studies of solar air heater. Energy 33(2008), 1691–1702.
  • [28] Gupta M.K., Kaushik S.C.: Performance evaluation of solar air heater for various artificial roughness geometries based on energy, effective and exergy efficiencies. Renew. Energy 34(2009), 465–476.
  • [29] Gupta M.K., Kaushik S.C.: Performance evaluation of solar air heater having expanded metal mesh as artificial roughness on absorber plate. Int. J. Therm. Sci. 48(2009), 1007–1016.
  • [30] Akpinar E.K., Koçyigit F.: ˇ Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates. Appl. Energy 87(2010), 11, 3438–3450.
  • [31] Alta D., Bilgili E., Ertekin C,. Yaldiz O.: Experimental investigation of three different solar air heaters: Energy and exergy analyses. Appl. Energy 87(2010), 10, 2953–2973.
  • [32] Pandey A.K., Tyagi V.V., Park S.R., Tyagi S.K.: Comparative experimental study of solar cookers using exergy analysis. J. Therm. Anal. Calorim. 109(2012), 1, 425–431.
  • [33] Benli H.: Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes. Renew. Energy 50(2013), 58–67.
  • [34] Lanjewar A, Bhagoria J.L., Sarviya R.M.: Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate. Energy 36(2011), 7, 4531–4541.
  • [35] Duffie J.A., Beckman W.A.: Solar Engineering Thermal Processes. Wiley, New York 1992.
  • [36] Altfeld K., Leiner W., Fiebig M.: Second law optimization of flat-plate solar air heaters. Part I: The concept of net exergy flow and the modeling of solar air heaters. Sol. Energy 41(1988), 2, 127–132.
  • [37] Svirezhev Y.M., Steinborn W.H., Pomaz V.L.: Exergy of solar radiation: global scale. Ecol. Model. 169(2003), 2-3, 339–346.
  • [38] Patela R.: Exergy of Heat Radiation. J. Heat Transfer 86(1964), 2, 187–192.
  • [39] Singh S., Chander S., Saini J.S.: Exergy based analysis of solar air heater having discrete V-down rib roughness on absorber plate. Energy 37(2012), 1, 749–758.
  • [40] Sahu M.K., Prasad R.K.: Exergy based performance evaluation of solar air heater with arc-shaped wire roughened absorber plate. Renew. Energy 96(2016), 233–243.
  • [41] Klein S.A.: Calculation of flat-plate collector loss coefficients. Sol. Energy 171975), 1, 79–80.
  • [42] McAdams W.H.: Heat Transmission. McGraw-Hill, New York 1954.
  • [43] Karwa R., Chitoshiya G.: Performance study of solar air heater having v-down discrete ribs on absorber plate. Energy 55(2013), 939–955.
  • [44] Swinbank W.C.: Long-wave radiation from clear skies. Q. J. Roy. Meteor. Soc. 89(1963), 339–348.
  • [45] Gupta D., Solanki S.C., Saini J.S.: Thermo-hydraulic performance of solar air heaters with roughened absorber plates. Sol. Energy 61 (1997); 1, 33–42.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be9acd0a-71d0-4e5b-b204-6114f9e6b54d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.