PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grape Quality Parameters in Western Carpathian Region under Changing Climatic Conditions as Influenced by Drought

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Western Carpathians are historically the northern range traditional grapevine growing areas since the Middle Ages. The mean anual temperature has increased by about 1.1°C during the last century in Slovakia. Elevated temperature impacted the growing conditions of grapevine. Together with the increased temperatures, higher frequency of drought periods and parameters are evident. Traditional grape producing areas are facing new challenges. Except for the accelerated grapevine phenology, pathogene infection pressure and occurence of pests including new ones, as well as the quality of grapes influencing wine quality, are changing. In order to evaluate the drought impact on the quality parameters of grapes the locality of the Cultivar Testing Station in Dolné Plachtince which belongs to the Central Slovakian grape producing region was chosen. Interanual variability of the drought impact on the grape quality was evaluated according to Palmer drought severity index (PDSI). The 1990-2014 period was used as a basis for evaluation. The period with the phenological phase crucial for the grape quality formation was determined. Two groups of cultivars with different ripening periods were selected. Pinot Gris, Muscat Ottonel Weiss, Müller Thurgau represented the early ripening cultivars (OIV earliness code 4 and 5), whereas Grüner Veltliner, Riesling, Welschriesling represented the late ripening cultivars (OIV code 8 and 9) were used. The cumulative values of PDSI for the crucial periods were calculated. The PDSI values as well as the sugar and acid contents were correlated to find the strength of relation between them. Short drought periods did not influence the grape quality significantly, while long drought periods caused a decrease of the acid content and an increase of the sugar content. Though the tendency was clear, the correlation level was mostly low. The most sensitive period in this sense was July-September; however, it was influenced by the ripening term of individual cultivars. The results suggest the necessity of a thorough approach to cultivar selection, taking into account its vitality and ability to preserve a satisfactory acid content in grapes by the harvest date.
Słowa kluczowe
Rocznik
Strony
39--45
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Department of Fruit Production, Viticulture and Enology, Slovak University of Agriculture in Nitra, A. Hlinku 2, 94976, Nitra, Slovakia
  • Department of Environmental Management, Slovak University of Agriculture in Nitra, A. Hlinku 2, 94976, Nitra, Slovakia
autor
  • Department of Fruit Production, Viticulture and Enology, Slovak University of Agriculture in Nitra, A. Hlinku 2, 94976, Nitra, Slovakia
  • Department of Environmental Management, Slovak University of Agriculture in Nitra, A. Hlinku 2, 94976, Nitra, Slovakia
  • Department of Fruit Production, Viticulture and Enology, Slovak University of Agriculture in Nitra, A. Hlinku 2, 94976, Nitra, Slovakia
  • Department of Environmental Management, Slovak University of Agriculture in Nitra, A. Hlinku 2, 94976, Nitra, Slovakia
  • Gemerprodukt Valice, Okružná 3771/116, 979 01 Rimavská Sobota, Slovakia
Bibliografia
  • 1. Anonym. 2004. European Environment Agency (EEA) Impacts of Europe’s changing climate. An indicator-based assessment. Office for Official Publications of the European Communities, Luxembourg.
  • 2. Balajka J., Lapin M., Minďáš j., Šťastný P., Thalmeinerová D. 2005. The Fourth National Communication of the Slovak Republic on Climate Change, Ministry of the Environment of the Slovak Republic, Slovak Hydrometeorological Institute, Bratislava.
  • 3. Battaglini A., Barbeau G., Bindi M., Badeck F.W. 2009. European winegrowers’ perceptions of climate change impact and options for adaptation. Reg. Environ. Change 9 (2), 61–73.
  • 4. Bock A., Sparks T., Estrella N., Menzel A. 2011. Changes in the phenology and composition of wine from Franconia Germany. Clim. Res. 50 (1), 69–81.
  • 5. Chaves M.M., Santos T., Souza C.R., Ortuño M.F., Rodrigues M.L., Lopes C., Maroco J., Pereira J.S. 2007. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Annals of Applied Biology 150 (2), 237–252.
  • 6. Chuine I., Yiou P., Viovy N., Seguin B., Daux V., Le Roy Ladurie E. 2004. Historical phenology: grape ripening as a past climate indicator. Nature 432 (7015), 289–290.
  • 7. Costa J.M., Ortuño M.F., Chaves M.M. 2007. Deficit irrigation as strategy to save water: physiology and potential application to horticulture. J. Integr. Plant Biol. 49, 1421–1434.
  • 8. Dalla Marta A., Grifoni D., Mancini M., Storchi P., Zipoli G., Orlandini S. 2010. Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area. J. Agric. Sci. 148 (6), 657–666.
  • 9. Daux V., Garcia de Cortazar-Atauri I., Yiou P., Chuine I., Garnier E., Le Roy Ladurie E., Moestre O., Tardaqila J. 2012. An open-database of grape harvest dates for climate research: data description and quality assessment. Climate Of the Past 8, 1403–1418.
  • 10. Edwards E.J., Clingeleffer P.R. 2013 Interseasonal effects of regulated deficit irrigation on growth, yield, water use, berry composition and wine attributes of Cabernet Sauvignon grapevines. Australian Journal of Grape and Wine Research 19 (2), 261–276.
  • 11. Escalona J.M., Flexas J., Medrano H. 1999. Stomatal and non-stomatal limitations of photosynthesis under water stress in fieldgrown grapevines. Aust. J. Plant Phys. 26, 421–433.
  • 12. Faško P., Lapin M., Pecho J. 2008. 20–year Extraordinary Climatic Period in Slovakia. Meteorologický časopis, 11, 99–105.
  • 13. Fendeková M., Gauster T., Labudová L., Vrabliková D., Danáčová Z., Fendek m., Pekárová P. 2018.Analysing 21st century meteorological and hydrological drought events in Slovakia. J. Hydrol. Hydromech., 66 (4), 393–403.
  • 14. IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker T.F., Qin D., Plattner G.-K. , Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V. , Midgley P.M.(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • 15. Intrigliolo D.S., Pérez D., Risco D., Yeves A., Castel J.R. 2012 Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrigation Science 30 (5), 339–349.
  • 16. Jones G.V., White M.A., Cooper O.R., Storchmann K. 2005 Climate change and global wine quality. Clim Change 73(3),319−343.
  • 17. Keller M. 2010. Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Australian Journal of Grape and Wine Research 16, 56–59.
  • 18. Labudová L., Faško P., Ivaňáková G. 2015. Changes in climate and changing climate regions. Moravian Geographical Reports 23 (3), 71–82.
  • 19. Magalhães N. 2008. Viticulture treaty; The vine, the vineyard and the terroir (in Portuguese). Chaves Ferreira, Lisboa, Portugal.
  • 20. Makra L., Vitányi B., Gál A., Mika J., Matyasovszky I., Hirsch T. 2009. Wine quantity and quality variations in relation to climatic factors in the Tokaj (Hungary) winegrowing region. Am. J. Enol. Vitic. 60,312–321.
  • 21. Mandelli F., Tonietto J., Hasenack H., Weber E. 2005.Climatic zoning for the production of quality grape wines“ heliothermic index for the state Rio Grande do Sul (in Portuguese) Proceeding of Congresso Brasileiro de Agrometeorologia, Campinas, 14.
  • 22. Možný M., Brázdil R., Dobrovolný P., Trnka M., Potopová V., Hlavinka P., Bartošová L., Zahradníček P., Štěpánek P., Žalud Z. 2016. Drought reconstruction based on grape harvest dates for the Czech Lands, 1499−2012. Climate Research, 70,119–132.
  • 23. Oliveira A.F., Mameli M.G., Pau L., Satta D., Nieddu D. 2013. Deficit Irrigation Strategies in Vitis vinifera L. cv. Cannonau under Mediterranean Climate. Part I – Physiological Responses, Growth, Yield and Berry Composition. S. Afr. J. Enol. Vitic. 34 (2), 170–183.
  • 24. Palmer W. C. 1965. Meteorological Drought. U.S. Department of Commerce Weather Bureau, Research Paper No. 45, 58.
  • 25. Parker A.k., CortÁzar-Atauri I.G. DE, van Leeuwen C., Chuine I. 2011. General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Aust. J. Grape Wine Res., 17,206–216.
  • 26. Poláček Š, Poláček M.2009. Viticulture and winemaking – brief history and present status (in Slovak). Viticulture – Viniculture fórum Skalica 2009, 25 – 26.2. 2009, zborník, Slovenská poľnohospodárska univerzita, ISBN 978–80–552–0308–9.
  • 27. Romero P., Fernández J.I., Martinez-Cutillas A. 2012. Physiological thresholds for efficient regulated deficit-irrigation management in winegrapes grown under semiarid conditions. Soil-Plant-Water Relationships and Berry Composition. Acta Horticulturae, 931 (931), 171–178.
  • 28. Sadras V., Moran M. 2012. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res.18, 115–122.
  • 29. Santos T.P., Lopes C.M., Rodrigues, L. M., de Souza C.R., Ricardo-da-Silva J.M., Maroco J.P., Pereira J.S., Chaves M. M. 2007. Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines. Scientia Horticulturae. 112 (3), 321–330.
  • 30. Storchi P., Costantini E. A. C., Bucelli P. 2005. The influence of climate and soil on viticultural and enological parameters of “Sangiovese” grapevines under non-irrigated conditions. Acta Hortic. 689, 333–340.
  • 31. Šiška B., Takáč J. 2009. Drought Analyse of Agricultural Regions as Influenced by Climatic Conditions in the Slovak Republic. Időjárás: Quarterly Journal of the Hungarian Meteorological Service, 113 (1–2), 135–143.
  • 32. Trégoat O., Van Leeuwen C., Choné X., Gaudillère J.-P. 2002 Ètude du régime hydrique et de la nutrition azotée de la vigne par des indicateurs physiologiques. Influence sur le comportement de la vigne et la maturation du raisin. J. Int. Sci. Vigne Vin, 36 (3), 133–142.
  • 33. Van Leeuwen C., Trégoat O., Choné X., Gaudillère J.P., Pernet D. 2007. Different environmental conditions, different results: the role of controlled environmental stress on grape quality potential and the way to monitor it. Proceedings of the thirteenth Australian Wine Industry Technical Conference, Adelaide, South Australia.
  • 34. Van Leeuwen C., Trégoat O., Choné X., Bois B., Pernet, D., Gaudillére J.P. 2009.Vine water status is a key factor in grape ripening and vintage qualityfor red Bordeaux wine. How can it be assessed for vineyard management purposes?Journal International des Sciences de la Vigne et du Vin, 43 (3), 121–134.
  • 35. VazM., Coelho R., Rato A., Samara-Lima R., Silva L.L., Campostrini E., Mota J.B. 2016. Adaptive strategies of two Mediterranean grapevinesvarieties (Aragonez syn. Tempranillo and Trincadeira) facedrought: physiological and structural responses. Theor. Exp. Plant Physol., 28, 205–220.
  • 36. Wenter A., Zanotelli D., Montagnani L., Tagliavini M., Andreotti C. 2018. Effect of different timings and intensities of water stress on yield and berry composition of grapevine (cv. Sauvignon blanc) in a mountain environment. Scientia Horticulturae, 236, 137–145
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be96d6e8-5228-455f-b83d-69655ddc9c03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.