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Abstract

In this paper, we are dealing with the problem of directly regulating unknown multi-

variable affine in the control nonlinear systems and its robustness analysis. The method

employs a new Neuro-Fuzzy Dynamical System definition, which uses the concept of

Fuzzy Systems (FS) operating in conjunction with High Order Neural Networks. In this

way the unknown plant is modeled by a fuzzy - recurrent high order neural network

structure (F-RHONN), which is of the known structure considering the neglected non-

linearities. The development is combined with a sensitivity analysis of the closed loop

in the presence of modeling imperfections and provides a comprehensive and rigorous

analysis showing that our adaptive regulator can guarantee the convergence of states to

zero or at least uniform ultimate boundedness of all signals in the closed loop when a

not-necessarily-known modeling error is applied. The existence and boundedness of the

control signal is always assured by employing a method of parameter “Hopping” and

“Modified Hopping”, which appears in the weight updating laws. Simulations illustrate

the potency of the method showing that by following the proposed procedure one can ob-

tain asymptotic regulation despite the presence of modeling errors. Comparisons are also

made to simple recurrent high order neural network (RHONN) controllers, showing that

our approach is superior to the case of simple RHONN’s.

1 Introduction

High order neural network structures can deal

with imprecise data and ill-defined activities. How-

ever, subjective phenomena such as reasoning and

perceptions are often regarded beyond the domain

of conventional neural network theory [21]. It is in-

teresting to note that fuzzy logic is another power-

ful tool for modeling uncertainties associated with

human cognition, thinking and perception. There-

fore, it has been established that neural networks

and fuzzy inference systems are universal approx-

imators [8, 19, 26],i.e., they can approximate any

nonlinear function to any prescribed accuracy pro-
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vided that sufficient hidden neurons and training

data, which have to be distributed in the full op-

eration space of the plant, or fuzzy rules are avail-

able. The neural and fuzzy approaches are most of

the time equivalent, differing between each other

mainly in the structure of the approximator cho-

sen. Indeed, in order to bridge the gap between the

neural and fuzzy approaches several researchers in-

troduce adaptive schemes using a class of parame-

terized functions that include both neural networks

and fuzzy systems [3, 10, 14, 16].

Recently, the combination of these two differ-

ent technologies has given rise to f uzzy− neural
or neuro− f uzzy approaches, that are intended to

capture the advantages of both fuzzy logic and

neural networks. Numerous works have shown

the viability of this approach for system modeling

[3, 10, 13, 14, 16]. Algorithms based upon this in-

tegration are believed to have considerable poten-

tial in the areas of expert systems, medical diagno-

sis, control systems, pattern recognition and system

modeling.

Adaptive control theory has been an active area

of research over the past years [2, 5, 7, 6, 9, 11,

17, 18, 20, 25, 27]. The identification procedure

is an essential part in any control procedure. In

the neuro or neuro− f uzzy adaptive control two

main approaches are followed. In the indirect adap-

tive control schemes, first the dynamics of the sys-

tem are identified and then a control input is gener-

ated according to the certainty equivalence princi-

ple. In the direct adaptive control schemes [9, 5, 18]

the controller is directly estimated and the con-

trol input is generated to guarantee stability with-

out knowledge of the system dynamics. Also,

many researchers focus on robust adaptive con-

trol that guarantees signal boundness in the pres-

ence of modeling errors and bounded disturbances

[2, 5, 6, 7, 9, 11, 18, 25, 27].

Recently [4, 12], high order neural network

function approximators (HONNF’s) have been pro-

posed for the identification of nonlinear dynamical

systems of the form ẋ = f (x,u), approximated by

a Fuzzy Dynamical System. This approximation

depends on the fact that fuzzy rules could be iden-

tified with the help of HONN’s. The same rationale

has been employed in [24, 1, 22, 23] where a neuro

- fuzzy approach for the indirect and direct control

of square unknown systems has been introduced

assuming only parameter uncertainty.

In this paper HONN’s are also used for the

neuro− f uzzy direct control of nonlinear dynam-

ical systems with modeling errors and a robusti-

fying analysis of the method is presented. From

the neural network aspect, we have the alternative

approximation of weighted indicator functions en-

sured with the help of multi high order neural net-

works. From the fuzzy logic aspect, the underlying

fuzzy model is of Mamdani-type [15]. The struc-

ture identification of the fuzzy system is made off-

line based either on human expertise or on gathered

data. However, the required a-priori information

obtained by linguistic information or data is very

limited. The only required information is an esti-

mate of the centers of the output fuzzy member-

ship functions. Information on the input variable

membership functions and on the underlying fuzzy

rules is not necessary because this is automatically

estimated by the HONN’s. This way the proposed

method is less vulnerable to initial design assump-

tions.

We consider that the unknown system is of an

affine in the control multivariable form and propose

its approximation by a recurrent structure employ-

ing two independent fuzzy subsystems. We also

assume the existence of disturbance expressed as

modeling error terms depending on both input and

system states. Every fuzzy subsystem is approxi-

mated from a family of HONN’s, each one being

related with a group of fuzzy rules. Weight updating

laws are given and it is proved that when the struc-

tural identification is appropriate and the modeling

error terms are within a certain region depending

on the input and state values, then the error reaches

zero very fast. Also, an appropriate state feedback

is constructed to achieve asymptotic regulation of

the output, while keeping bounded all signals in the

closed loop. A novel technique of weight hopping is

also introduced to assure the existence and bound-

edness of the control signal.

The paper is organized as follows. Section 2

presents notation and preliminaries related to the

concept of fuzzy systems (FS) and the terminol-

ogy used in the remaining paper, while Section 3

demonstrate the neuro− f uzzy representation of the

proposed algorithm. The direct neuro fuzzy reg-

ulation of affine in the control dynamical systems
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under the presence of modeling errors and its ro-

bustifying analysis is presented in Section 4, where

the method of parameter hopping is explained and

the associated weight adaptation laws are given. Fi-

nally, simulations presented in Section 5 results on

the control of a well known system show off that

by following the proposed procedure one can obtain

asymptotic regulation in a much better way than by

just simply using RHONN controllers. Finally, Sec-

tion 6 concludes the work.

2 Preliminaries

Consider a nonlinear function f (x) ∈ Rn, x ∈
X ⊂ Rn approximately described by a Mamdani-

type Fuzzy System (FS). Let Ωl1,l2,...,ln
j1, j2,..., jn be de-

fined as the subset of x ∈ X belonging to the

( j1, j2, ..., jn)th input fuzzy patch and pointing -

through the vector field f (·) - to the subset which

belong to the l1, l2, ..., lnth output fuzzy patch. In

other words, Ωl1,l2,...,ln
j1, j2,..., jn contains input values x that

are associated through a fuzzy rule with output val-

ues f (x).

Furthermore, the FS receiving as input the n−
tuple of x = (x1,x2, . . . ,xn) gives as output an ap-

proximate of f (x) using fuzzy rules and a well

known fuzzy inference procedure.

Definition 1 According to the above notation the
Rule Firing Indicator Function (RFIF) or simply
Indicator Function (IF) connected to Ωl1,l2,...,ln

j1, j2,..., jn is
defined as follows:+

Il1,l2,...,ln
j1, j2,..., jn(x(t)) =

{
α(x(t)) i f x(t) ∈Ωl1,l2,...,ln

j1, j2,..., jn
0 otherwise

(1)

where α(x(t)) denotes the firing strength of the
rule.

According to the standard fuzzy system descrip-

tion, this strength depends on the membership value

of each xi in the corresponding input membership

functions μF ji and more specifically [26], α(x(t)) =
min[μF j1(x1(k)), . . .μF jn(xn(k))]. Then, assuming a

standard defuzzification procedure (e.g. weighted

average), the functional representation of the fuzzy

system can be written as

f (x(t)) =∑(x̄ f )
l1,l2,...,ln
j1,..., jn × (I′

)l1,l2,...,ln
j1,..., jn

(x(t)) (2)

where the summation is carried out over all the

available fuzzy rules. (x̄ f )
l1,l2,...,ln
j1,..., jn is any constant

vector consisting of the centers of fuzzy partitions

of f determined by l1, l2, ..., ln and (I′)l1,l2,...,ln
j1,..., jn (x(t))

is the weighted IF (WIF) defined in (1) divided by

the sum of all IF participating in the summation of

2.

However, in order the approximation problem

to make sense the space y := x must be compact.

Thus, our first assumption is the following:

Assumption 1 y := x is a compact set.

Notice that since y ⊂ ℜn the above proposition is

identical to the proposition that it is closed and

bounded. Also, it is noted that even if y is not com-

pact we may assume that there is a time instant T

such that x(t) remains in a compact subset of y for

all t < T ; i.e. if yT := {x(t) ∈ y, t < T} We may

replace proposition 1 by the following proposition

Assumption 2 yT is a compact set.

Basing on the fact that functions of high order

neurons are capable of approximating discontinu-

ous functions [4] and [12] we use high order neural

networks (HONN’s) [22] in order to approximate

the WIF. The next lemma [12] states that a HONN

can approximate the WIF (I′)l1,...,ln
j1,..., jn .

Lemma 1 Consider the indicator function
(I′)l1,...,ln

j1,..., jn and the family of the HONN’s
N(x(t);w,L). Then for any ε> 0 there is a vector of
weights w j1,..., jn;l1,...,ln and a number of L j1,..., jn;l1,...,ln

high order connections such that

sup
(x(t))∈ȳ

{(I′)l1,...,ln
j1,..., jn (x(t))−

N(x(t);w j1,..., jn;l1,...,ln ,L j1,..., jn;l1,...,ln)}< ε
where ȳ≡ y if assumption 1 is valid and ȳT ≡ y if
assumption 2 is valid.

Let us now keep L j1,..., jn;l1,...,ln constant, i.e. let us

preselect the number of high order connections, and

let us define the optimal weights of the HONN with

L j1,..., jn;l1,...,ln high order connections as follows
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w̄ j1,..., jn;l1,...,ln := arg min
w∈R j1,..., jn ;l1 ,...,ln

×⎧⎨⎩ sup
(x(t))∈ȳ

∣∣∣(I′)l1,...,ln
j1,..., jn (x(t))

−N(x(t);w,L j1,..., jn;l1,...,ln) | }

and the modeling error as follows

νl1,...,ln
j1,..., jn(x(t)) = (I′)l1,...,ln

j1,..., jn (x(t))

−N(x(t);w j1,..., jn;l1,...,ln ,L j1,..., jn;l1,...,ln)

It is worth noticing that from Lemma 1, we have

that sup
(x(t))∈ȳ

∣∣∣νl1,...,ln
j1,..., jn(x(t))

∣∣∣ can be made arbitrarily

small by simply selecting appropriately the number

of high order connections.

Following the above notation (I′)l1,l2,...,ln
j1,..., jn in

(2) can be approximated by Nl1,l2,...,ln
j1,..., jn (x) =

N(x(t);w j1,..., jn;l1,l2,...,ln ,L j1,..., jn;l1,l2,...,ln).

So, Eq. (2) can be rewritten as

f (x(t)) =∑(x̄ f )
l1,l2,...,ln
j1,..., jn ×Nl1,l2,...,ln

j1,..., jn (x(t)) (3)

From the above definitions and Eq. (3), it is ob-

vious that the accuracy of the approximation of f (x)
depends on the approximation abilities of HONN’s

and on an initial estimate of the centers of the out-

put membership functions. These centers can be

obtained by experts or by off-line techniques based

on gathered data. Any other information related to

the input membership functions is not necessary be-

cause it is replaced by the HONN’s.

Figure (1) shows the overall scheme of the pro-

posed neuro− f uzzy approximation of a function

f (x) depending on measurements of input variables

x and a-priori knowledge of the centers of the parti-

tions of the fuzzy output variables. When x is given

as inputs to the neuro− f uzzy network (input layer),

the output of indicator layer gives the weighted in-

dicator function outputs which activate the corre-

sponding rules around a fuzzy center (rule layer).

The summation of all rules at each sampling time

instant gives the overall output of the function f (x)
(output layer).

3 Neuro-Fuzzy Representation of
the Algorithm

We consider affine in the control, nonlinear dy-

namical systems of the form

ẋ = f (x)+g(x) ·u (4)

where the state x ∈ Rn is assumed to be completely

measured, the control u is in Rq, f is an unknown

smooth vector field called the drift term and g is a

matrix with rows containing the unknown smooth

controlled vector fields gi j. The above class of

continuous-time nonlinear systems are called affine,

because in (4) the control input appears linear with

respect to g. The main reason for considering this

class of nonlinear systems is that most of the sys-

tems encountered in engineering, are by nature or

design, affine.

We are using an affine in the control fuzzy dy-

namical system, which approximates the system in

(4) and uses two fuzzy subsystem blocks for the de-

scription of f(x) and g(x) as follows

f̂ (x) = Ax̂+∑ (x̄ f )
l1,...,ln
j1,..., jn ×

(
I′
)

f
l1,...,ln
j1,..., jn(x) (5)

ĝi j(x) =∑ (x̄gi j)
l
j1,..., jn ×

(
I′
)

g
l
j1,..., jn(x) (6)

where A is a n × n stable matrix which for

simplicity can be taken to be diagonal as A =
diag[−a1,−a2, ...,−an], ai positive, and the sum-

mation is carried out over the number of all avail-

able fuzzy rules. (I′) f , (I
′)g are appropriate fuzzy

rule indicator functions and the meaning of indices

•l1,...,ln
j1,..., jn has already been described in Section 2.

According to Lemma 1, every indicator func-

tion can be approximated with the help of a suit-

able HONN. Therefore, every (I′) f , (I
′)g can be re-

placed with a corresponding HONN as follows

f̂ (x|Wf ) = Ax̂+∑(x̄ f )
l1,...,ln
j1,..., jn ×Nf

l1,...,ln
j1,..., jn(x) (7)

ĝi j(x|Wg) =∑(x̄gi j)
l
j1,..., jn ×Ng

l
j1,..., jn(x) (8)

where Wf ,Wg are weights that results from adaptive

laws which will be discussed later, and Nf , Ng are

appropriate HONN’s.
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Figure 1. Overall scheme of the proposed neuro− f uzzy representation which approximates function f (x)
based on measurements of x and a-priori knowledge of the centers x̄ f .

So, the optimal approximation of f(x) and g(x)
subfunctions of the dynamical system becomes

f (x|W ∗
f ) = Ax+∑ (x̄ f )

l1,...,ln
j1,..., jn ×N∗f

l1,...,ln
j1,..., jn(x) (9)

gi j(x|W ∗
g ) =∑ (x̄gi j)

l
j1,..., jn ×N∗g

l
j1,..., jn(x) (10)

In order to simplify the model structure, since

some rules result in the same output partition, we

could replace the NNs associated to the rules hav-

ing the same output with one NN and therefore the

summations in (7),(8) are carried out over the num-

ber of the corresponding output partitions. There-

fore, the affine in the control fuzzy dynamical sys-

tem in (5), (6) is replaced by the following equiv-

alent affine Fuzzy - Recurrent High Order Neural

Network (F-RHONN), which depends on the cen-

ters of the fuzzy output partitions (x̄ f )l and (x̄gi j)l

˙̂x = Ax̂+
N p f
∑

l=1
(x̄ f )l×Nfl (x)+

n
∑

i=1

(
q
∑
j=1

(
N pgi

∑
l=1

(x̄gi j)l×Ngl (x)
)

u j

)
(11)

Or in a more compact form

˙̂x = Ax̂+XfWf S f (x)+XgWgSg(x)u (12)

where X f , Xg are matrices containing the centres

of the partitions of every fuzzy output variable of

f(x) and g(x), respectively, S f (x),Sg(x) are matri-

ces containing high order combinations of sigmoid

functions of the state x and W f ,Wg are matrices

containing respective neural weights according to

(11). The dimensions and the contents of all the

above matrices are chosen so that XfWf S f (x) is

a n× 1 vector and XgWgSg(x) is a n× q matrix.

For notational simplicity we assume that all out-

put fuzzy variables are partitioned to the same num-

ber, m, of partitions. Under these specifications X f

is a n× n ·m block diagonal matrix of the form

Xf = diag(Xf1
,Xf2

, . . . ,Xfn) with Xfi being an m-

dimensional row vector of the form

Xfi =
[
x̄1

fi
x̄2

fi
· · · x̄m

fi

]
or in a more detailed form

Xf =

⎡⎢⎢⎣
x̄1

f1
· · · x̄m

f1
0 · · · 0 0 · · · 0

0 · · · 0 x̄1
f2
· · · x̄m

f2
0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 x̄1

fn
· · · x̄m

fn

⎤⎥⎥⎦
where x̄p

fi
with p = 1,2, ...,m, denotes the cen-

tre of the p-th partition of fi. Also, S f (x) =[
s1(x) . . . sk(x)

]T
, where each sl(x) with l =

{1,2, ...,k}, is a high order combination of sigmoid

functions of the state variables and Wf is a n ·m× k
matrix with neural weights. Wf assumes the form

Wf =
[
Wf1

· · · Wfn

]T
, where each Wfi is a matrix[

wpl
fi

]
m×k

. Xg is a n× n ·m · q block diagonal ma-

trix of the form Xg = diag(Xg1 j ,Xg2 j , . . . ,Xgnq) with

each Xgi j ( j = 1,2, ...,q, i = 1,2, ...,n) being an m−
dimensional raw vector of the form
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Xgi j =
[
x̄1

gi j
x̄2

gi j
· · · x̄m

gi j

]
or in a more detailed form

Xg =⎡⎢⎢⎣
Xg11

· · · Xg1q 0 · · · 0 0 · · · 0

0 · · · 0 Xg21
· · · Xg2q 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 Xgn1

· · · Xgnq

⎤⎥⎥⎦
where x̄k

gi j
denotes the center of the k-th partition

of gi j. Wg is a n ·m · q× n · q block diagonal ma-

trix with Wg = [Wg1
,Wg2

, . . . ,Wgnq ]
T , where each Wgk

with k = 1,2, ...,n · q is an m−dimensional column

vector
[
wp

gk

]
m×1

of neural weights. Finally, Sg(x) is

a n ·q×q matrix of the form Sg = [Sg1
,Sg2

, . . . ,Sgn ]
T ,

where each Sgi is a diagonal q× q matrix Sgi =
diag(si, . . . ,si) with the diagonal element si(x) be-

ing a high order combination of sigmoid functions

of the state variables.

4 Direct Robust Adaptive Neuro-
Fuzzy Control

4.1 Problem Formulation

The state regulation problem is known as our

attempt to force the state to zero from an arbitrary

initial value by applying appropriate feedback con-

trol to the plant input. However, since the plant is

considered unknown, we assume that the unknown

plant can be described by the following model ar-

riving from the neuro-fuzzy representation of (12),

where the weight values W ∗
f and W ∗

g are unknown.

˙̂x = Ax̂+XfW ∗
f S f (x)+XgW ∗

g Sg(x)u (13)

Due to the approximation capabilities of the dy-

namic neural networks, we can assume with no loss

of generality, that the unknown plant (4) can be

completely described by a dynamical neural net-

work plus a modeling error term ω(x,u). In other

words, there exist weight values W ∗
f and W ∗

g such

that the system (4) can be written as

˙̂x=Ax̂+XfW ∗
f S f (x)+XgW ∗

g Sg(x)u+ω(x,u) (14)

Therefore, the state regulation problem is ana-

lyzed for the system (14) instead of (4). Since W ∗
f

and W ∗
g are unknown, our solution consists of de-

signing a control law u(Wf ,Wg,x) and appropriate

update laws for Wf and Wg to guarantee conver-

gence of the state to zero and in some cases, which

will be analyzed in the following sections, bound-

edness of x and of all signals in the closed loop.

The following mild assumptions are also im-

posed on (4), to guarantee the existence and unique-

ness of solution for any finite initial condition and

u ∈U .

Assumption 3 Given a class U ⊂ Rq of admissible
inputs, then for any u ∈U and any finite initial con-
dition, the state trajectories are uniformly bounded
for any finite T > 0 . Meaning that we do not al-
low systems processing trajectories which escape at
infinite, in finite time T , T being arbitrarily small.
Hence, |x(T )|< ∞.

Assumption 4 The vector fields f, gi j, i = 1,2, ...,n
are continuous with respect to their arguments and
satisfy a local Lipchitz condition so that the solution
x(t) of (4) is unique for any finite initial condition
and u ∈U.

4.2 Adaptive Regulation - Complete
Matching

In this subsection, we present a solution to

the adaptive regulation problem and investigate the

modeling error effects. Assuming the presence of

modeling error the unknown system can be written

as (14), where x ∈ ℜn is the system state vector,

u ∈ ℜq are the control inputs, Xf , Xg are n× n ·m
and n× n ·m · q block diagonal matrices, respec-

tively, W ∗
f is a n ·m× k matrix of synaptic weights

and W ∗
g is a n ·m · q× n · q block diagonal matrix.

Finally, S f (x) is a k-dimensional vector and Sg(x)
is a n ·q×n block diagonal matrix with each diago-

nal element si(x) being a high order combination of

sigmoid functions of the state variables.

Define now ν as

ν Δ
= XfWf S f (x)+XgWgSg(x)u− ẋ−Ax (15)

substituting Eq. (14) to Eq. (15) we have

ν Δ
= XfW̃f S f (x)+XgW̃gSg(x)u−ω(x,u) (16)
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where W̃f = Wf −W ∗
f and W̃g = Wg−W ∗

g . Wf

and Wg are estimates of W ∗
f and W ∗

g , respectively

and are obtained by update laws which are to be de-

signed in the sequel. ν cannot be measured since ẋ
is unknown. To overcome this problem, we use the

following filtered version of ν

ν= ξ̇+Kξ

where K =

⎡⎢⎢⎣
k1 0 · · · 0

0 k2 0 · · ·
· · · 0 · · · 0

0 · · · 0 kn

⎤⎥⎥⎦ is a diagonal pos-

itive definite matrix. In the sequel, according to Eq.

(15) we have that

ξ̇+Kξ=−ẋ−Ax+XfWf S f (x)+XgWgSg(x)u
(17)

and after substituting Eq. (14) we have

ξ̇=−Kξ+XfW̃f S f (x)+XgW̃gSg(x)u−ω(x,u)
(18)

To implement Eq. (18), we take

ξ Δ
= ζ− x (19)

Employing Eq. (19), Eq. (17) can be written as

ζ̇+Kζ= Kx−Ax+XfWf S f (x)+XgWgSg(x)u
(20)

with state ζ ∈ℜn. This method is referred to as

error filtering.

The regulation of the system can be achieved by

selecting the control input to be

u =− [XgWgSg(x)]
+ [XfWf S f (x)+υ] (21)

where [·]+ means pseudo-inverse in Moore-Penrose

sense and

υ= (K−A)x (22)

Thus, substituting Eq. (21), Eq. (20) becomes

ζ̇=−Kζ (23)

To continue, consider the Lyapunov candidate func-

tion

V = ξTξ+ζTζ+
1

2γ1
tr
{

W̃ T
f W̃f

}
+

1

2γ2
tr
{

W̃ T
g W̃g

}
(24)

If we take the derivative of Eq. (24) with respect to

time we obtain

V̇ =
−ξT Kξ−ζT Kζ+ξT XfW̃f S f (x)+ξT XgW̃gSg(x)u−

ξTω(x,u)+ 1
γ1 tr

{
Ẇ T

f W̃f

}
+ 1
γ2 tr

{
Ẇ T

g W̃g
}

Hence, if we choose

tr
{

Ẇ T
f W̃f

}
=−γ1ξT XfW̃f S f (x) (25)

tr
{

Ẇ T
g W̃g

}
=−γ2ξT XgW̃gSg(x)u (26)

V̇ becomes

V̇ ≤−λmin (K)‖ξ‖2−λmin (K)‖ζ‖2+‖ξ‖‖ω(x,u)‖
(27)

It can be easily verified that Eqs. (25) and (26) after

making the appropriate operations, can be element

wise written as

a) for the elements of Wf

ẇpl
fi
=−γ1x̄p

fi
ξsl(x) (28)

or equivalently Ẇ l
fi
= −γ1 (Xfi)

T ξsl(x) for all i =
1,2, ...,n, p = 1,2, ...,m and l = 1,2, ...,k.

b) for the elements of Wg

ẇp
gi j

=−γ2x̄p
gi j
ξu jsi(x) (29)

or equivalently Ẇgi j = −γ2
(
Xgi j

)T ξu jsi(x) for all

i = 1,2, ...,n, j = 1,2, ...,q and p = 1,2, ...,m.

Equations (28) and (29) can be finally written in

a compact form as

Ẇf =−γ1XT
f ξS

T
f (x) (30)

Ẇg =−γ2XT
g ξu

T ST
g (x) (31)

where ξ is a vector ξ = (ξ1,ξ2, ...,ξn) and u is

also a vector u = (u1,u2, ...,un). Furthermore, we

cannot conclude anything about the weight conver-

gence if the existence and boundeness of signal u
are not assured. So, the weight updating laws (28),

(29) have to be modified by introducing a method

of parameter “Hopping” or “Modified Hopping”,

which is explained below.

4.2.1 Introduction to the Parameter Hopping

The weight updating laws presented previously

in Section 4.2 are valid when the control law sig-

nal in (21), (22) exists. Therefore, the existence

of [XgWgSg(x)]
+ has to be assured. Since the sub

matrices of Sg(x) are diagonal with the diagonal el-

ements si(x) 	= 0 and Xg, Wg are block diagonal and
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thus linearly independent, the existence of the pseu-

doinverse is assured when Xgi, j+q(i−1)
·Wg j+q(i−1)

	= 0,

∀ i = 1, . . . ,n and ∀ j = 1, . . . ,q. Therefore, Wg j+q(i−1)

has to be confined such that
∣∣∣Xgi, j+q(i−1)

·Wg j+q(i−1)

∣∣∣≥
θ j+q(i−1) > 0, with θ j+q(i−1) being a small pos-

itive design parameter (usually in the range of

[0.001,0.01]). In case the boundary defined by

the above confinement is nonlinear the updating

Wg can be modified by using a projection algo-

rithm [9]. For notational simplicity, we can define

with a = i, j+ q(i− 1) and b = j+ q(i− 1). How-

ever, in our case the boundary surface is linear and

the direction of updating is normal for it because

∇ [Xga ·Wgb ] = Xga . Therefore, the projection of

the updating vector on the boundary surface is of

no use. Instead, using concepts from multidimen-

sional vector geometry we modify the updating

law such that, when the weight vector approaches

(within a safe distance θb) the forbidden hyper-

plane Xga ·Wgb = 0 and the direction of updating is

toward the forbidden hyper-plane, it introduces a

hopping which drives the weights in the direction

of the updating but on the other side of the space,

where here the weight space is divided into two

sides by the forbidden hyper-plane. For example,

let the weight updating hopping occurs at the th
time instant. Then, if the weights at t−h time in-

stant lies in the space determined by Xga ·Wgb <−θ
then, after performing hopping the weights move

into the space determined by Xga ·Wgb > θ and from

t+h on they continue their updating direction. This

procedure is depicted in Fig. 2, where a simplified

2-dimensional representation is given. Theorem 2

below introduces this hopping in the weight updat-

ing law.

Lemma 2 The updating law for the elements of
Wgi j given by (29) and modified according to the
Hopping method:

Ẇgb =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−γ2 (Xga)ξu jsi(x) i f |Xga ·Wgb |> θb
or Xga ·Wgb =±θb
and Xga ·Ẇgb <> 0

−γ2 (Xga)ξu jsi(x) otherwise

−2κinner(XgaWgb (Xga )
T)

tr{(Xga )
T Xga}

assures the existence of the control signal.

Proof The first part of the weight updating equa-

tion is used when the weights are at a certain dis-

tance (condition if |Xga ·Wgb |> θb ) from the forbid-

den plane or at the safe limit (condition |Xga ·Wgb |=
±θb) but with the direction of updating moving

the weights far from the forbidden plane (condition

Xga ·Ẇgb <> 0). In the current notation, the “± ”

symbol has a one to one correspondence with the

“ <> ” one, meaning that “+ ” case corresponds to

“ < ” case and the “− ” case corresponds to “ > ”

case.

In the second part of Ẇgb , term

− 2κinner(XgaWgb (Xga )
T)

tr{(Xga )
T Xga} determines the magnitude of

weight hopping, which as explained in the vecto-

rial proof of “hopping” [22], has to be at least two

times the distance of the current weight vector to

the forbidden hyper-plane. In addition, the constant

value κinner helps the weights to move nearby but

outside the forbidden hyper planes in order to avoid

the infinite hopping. Therefore, the existence of the

control signal is assured because the weights never

reach the forbidden plane. �

The inclusion of weight hopping in the weights

updating law guarantees that the control signal does

not go to infinity. Apart from that, it is also of

practical use to assure that XgWgSg(x) does not ap-

proach even temporarily at very large values be-

cause in this case the method may become algo-

rithmically unstable driving at the same time the

control signal to zero failing to control the sys-

tem. To assure that this situation does not happen

we have again to assure that |Xga ·Wgb | < ρb with

ρb being again a design parameter determining an

external limit for Xga ·Wgb . Following the same

lines of thought with the case of weight hopping

introduced above we could again consider the for-

bidden hyperplanes being defined by the equation

|Xga ·Wgb | = ρb. When the weight vector reaches

one of the forbidden hyper-planes Xga ·Wgb = ρb
and the direction of updating is toward the forbid-

den hyper-plane, a new modified hopping is intro-

duced which moves the weights insight the restrict-

ing area. This procedure is depicted in Fig. 4,

in a simplified 2-dimensional representation. The

magnitude of hopping is −κouter(XgaWgb (Xga )
T)

tr{(Xga )
T Xga} being

determined by following again the same vectorial

proof [22], with κouter a small positive number de-

cided appropriately from the designer as will be ex-
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xw=0
xw=θ

xw=-θ

w
1

Weight updating
direction

0 .

w
2

Hopping
magnitude

Figure 2. Pictorial Representation of parameter hopping

plained further down.

The adaptation of the weights is perpendicular

to the forbidden hyperplanes. This is demonstrated

using the first derivative of Xga ·Wgb in respect to

the elements of Wgb which is actually equal to the

vector Xga of the fuzzy output centers. When the

weights leave the admissible area then the hopping

condition is activated and the weights come back to

the permissible area as can be seen in Fig. 3. The

positive constant values κinner, κouter help the de-

signer to avoid the infinite hopping that may occur

between the forbidden hyperplanes.

By performing hopping when Xga · Wgb

reaches either the inner or outer forbidden

planes, Xga ·Wgb is confined to lie in space P =
{Xga ·Wgb : |Xga ·Wgb | ≤ ρb and |Xga ·Wgb |> θb}
lying between these hyper-planes. The weight up-

dating law for Wgb incorporating the two hopping

conditions can now be expressed as

Ẇgb =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γ2 (Xga)ξu jsi(x)

i f Xga ·Wgb ∈ P

or Xga ·Wgb = (±θb or±
and Xga ·Ẇgb <> or

>< 0

−γ2 (Xga)ξu jsi(x)−
−2σiκinner(XgaWgb (Xga )

T)
tr{(Xga )

T Xga}
− (1−σi)κouter(XgaWgb (Xga )

T)
tr{(Xga )

T Xga}

otherwise

(32)

where

σi =

⎧⎨⎩0
i f Xga ·Wgb =±ρl
and Xga ·Ẇgb <> 0

1 otherwise
(33)

where again, the “± ” symbol has a one to one

correspondence with the “ <> ” one, meaning that

“+ ” case corresponds to “ < ” case and the “− ”

case corresponds to “ > ” case.

At this point we can distinguish two possible

cases. The complete model matching at zero case

and the modeling error at zero case.

Ẇgb =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γ2 (Xga)ξu jsi(x)

i f Xga ·Wgb ∈ P

or Xga ·Wgb = (±θb or±
and Xga ·Ẇgb <> or

>< 0

−γ2 (Xga)ξu jsi(x)−
−2σiκinner(XgaWgb (Xga )

T)
tr{(Xga )

T Xga}
− (1−σi)κouter(XgaWgb (Xga )

T)
tr{(Xga )

T Xga}

otherwise

(32)
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Figure 3. Inner and outer hopping at a distance which depends on an appropriate selection of κinner, κouter

constant values.
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0 XW=-ñ

P

Outer
Hopping

Outer
Hopping

Inner
Hopping

.
w

1

w
2

XW=ñ

Weight updating
direction

Figure 4. Pictorial Representation of inner and outer parameter hopping
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4.2.2 The Complete Model Matching at Zero
Case

We make the following assumption.

Assumption 5 The modeling error term satisfies

‖ω(x,u)‖ ≤ �′1 ‖x‖+ �′′1 ‖u‖
where �′1 and �′′1 are known positive constants.

Also, we can find an a priori known constant

�u > 0, such that

‖u‖ ≤ �u ‖x‖ (34)

and assumption 5 becomes equivalent to

‖ω(x)‖ ≤ �1 ‖x‖ (35)

where

�1 = �′1 + �′′1�u (36)

is a positive constant.

One can easily verify that (34) is valid provided

that XfWf is uniformly bounded by a known pos-

itive constant εi so XfWf (t) is confined to the set

P2 = {Xfi ·W l
fi

:
∣∣∣Xfi ·W l

fi

∣∣∣ ≤ εi} through the use of

a hopping algorithm. In particular, the standard up-

date law (26) is modified to

Ẇ l
fi
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γ1 (Xfi)
T ξsl(x)

i f Xfi ·W l
fi
∈ P2

or Xfi ·W l
fi
=±εi

and Xfi ·Ẇ l
fi
>< 0

−γ1 (Xfi)
T ξsl(x)−

−κouter
(

XfiW
l
fi(Xfi)

T
)

tr
{
(Xfi)

T
Xfi

} otherwise

(37)

therefore, we have the following lemma.

Lemma 3 If the initial weights are chosen such that

Xfi ·W l
fi
(0) ∈ P2 and Xfi ·W ∗l

fi
∈ P2 then we have

Xfi ·W l
fi
∈ P2 for all t ≥ 0.

Proof The above lemma can be readily established

by noting that whenever |Xfi · (W l
fi
)−| ≥ εi then

d
dt

(
|Xfi · (W l

fi
)+|2

)
≤ 0 (38)

which implies that after hopping occurs, the

weights (W l
fi
)+, are directed towards the interior of

P2. For simplicity, since we will be working from

now on with the time (·)+, we omit the + sign from

the exponent. It is true that

d
dt

(
|Xfi ·W l

fi
|2
)
=W l

fi

T
Ẇ l

fi
XfiXfi

T (39)

Since XfiXfi
T > 0, only W l

fi

TẆ l
fi

determines the

sign of the above derivative.

Employing the modified adaptive law (37), we

obtain(
W l

fi

)T
Ẇ l

fi
= −γ1

(
W l

fi

)T
(Xfi)

T ξsl(x)

−κouterεi

(
W l

fi

)T
W l

fi∥∥∥W l
fi

∥∥∥ (40)

where εi =

(
XfiW

l
fi(Xfi)

T
)

tr
{
(Xfi)

T
Xfi

} . As concerning the second

part of the above equation it is obvious that εi > 0

and

(
W l

fi

)T
W l

fi∥∥∥W l
fi

∥∥∥ > 0. So,

−κouterεi

(
W l

fi

)T
W l

fi∥∥∥W l
fi

∥∥∥ < 0.

Now, regarding the first part of eq. (40), we can

distinguish two cases:

Case 1: Xfi ·W l
fi
= εi and Xfi ·Ẇ l

fi
< 0.

From the above notation we have that

XfiẆ
l
fi
=−γ1Xfi (Xfi)

T ξsl(x)< 0⇒ γ1ξsl(x)> 0

(41)

also, XfiW
l
fi
≥ εi and so the first part of Eq. (40)

becomes

−γ1
(

W l
fi

)T
(Xfi)

T ξsl(x)≤−γ1εiξsl(x)

according to Eq. (41)

−γ1
(

W l
fi

)T
(Xfi)

T ξsl(x)< 0

Case 2: Xfi ·W l
fi
≤−εi and Xfi ·Ẇ l

fi
> 0.
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From the above notation we have that

XfiẆ
l
fi
=−γ1Xfi (Xfi)

T ξsl(x)> 0⇒ γ1ξsl(x)< 0

(42)

also, XfiW
l
fi
≤ −εi and so the first part of Eq.

(40) becomes

−γ1
(

W l
fi

)T
(Xfi)

T ξsl(x)≥−γ1(−εi)ξsl(x)

according to Eq. (42)

−γ1
(

W l
fi

)T
(Xfi)

T ξsl(x)< 0

therefore, we finally obtain

d
dt

(
|Xfi ·W l

fi
(t)|2

)
≤ 0

�

In the sequel, employing assumption 5, Eq. (27)

becomes

V̇ ≤−λmin (K)‖ξ‖2−λmin (K)‖ζ‖2+�1 ‖ξ‖‖x‖⇒

V̇ ≤
−λmin (K)

(
‖ξ‖2 +‖ζ‖2

)
+ �1 ‖ξ‖2 + �1 ‖ξ‖‖ζ‖⇒

V̇ ≤−[‖ξ‖ ‖ζ‖][λmin(K)− �1 −�1

0 λmin(K)

][‖ξ‖
‖ζ‖

]
(43)

Hence, if we chose λmin(K) ≥ �1 then Eq. (43) be-

comes negative. Thus, we have

V̇ ≤ 0. (44)

Regarding the negativity of V̇ we proceed with

the following lemma.

Lemma 4 Based on the adaptive laws (32), (37) the

additional terms introduced in the expression for V̇ ,

can only make V̇ more negative.

Proof Let that W ∗
gb

contains the actual un-

known values of Wgb such that
∣∣Xga ·W ∗

gb

∣∣ >> θb
and that W̃gb = Wgb −W ∗

gb
. Then, the weight

hopping can be equivalently written with re-

spect to W̃gb as −2κinnerθbW̃gb/‖W̃gb‖ when

the inner hopping condition is activated or

−κouterρbW̃gb/‖W̃gb‖ when the outer hopping con-

dition is activated. Under this consideration

the modified updating law is rewritten as Ẇgb =

−γ2
(

1Xi
)T ξu jsi(x) − 2σiκinnerθbW̃gb/‖W̃gb‖ −

(1−σi)κouterρbW̃gb/‖W̃gb‖. With this updating law

it can be easily verified that (43) becomes

V̇ ≤
−[‖ξ‖ ‖ζ‖][λmin(K)− �1 −�1

0 λmin(K)

][‖ξ‖
‖ζ‖

]
−Θg (45)

with Θg being a positive constant expressed as

Θg = σi∑2κinnerθb
(
(W̃gb)

T )W̃gb)
)
/‖W̃gb‖+

(1−σi)κouter∑ρb
(
(W̃gb)

T )W̃gb)
)
/‖W̃gb‖ ≥ 0

for all time, where the summation includes all

weight vectors which require hopping.

Therefore, the negativity of V̇ is actually

strengthened due to the last negative term.

By using the modified updating law for W l
fi

the

negativity of the Lyapunov function is not compro-

mised. Indeed, the first part of the modified form

of Ẇ l
fi

shown in Eq. (37), is exactly the same with

(26) and therefore according to the development of

(26) the negativity of V is in effect. The first part

is used when the weights are inside the constraint

area (condition if
∣∣∣Xfi ·W l

fi

∣∣∣≤ εi ) or at the safe limit

(condition Xfi ·W l
fi
= ±εi) but with the direction of

updating moving the weights towards the ’safe’ re-

gion (condition Xfi ·Ẇ l
fi
>< 0).

In the second part of W l
fi
, term

−κouter
(

XfiW
l
fi
(Xfi )

T
)

tr{(Xfi )
T Xfi}

determines the magnitude of

weight hopping, which as explained in the vectorial

proof of “hopping” [22], has to be two κouter times

the distance of the current weight vector. Regarding

the negativity of V̇ we proceed as follows.

Let that W ∗l
fi

contains the actual unknown val-

ues of W l
fi

such that
∣∣∣Xfi ·W ∗l

fi

∣∣∣ << εi and that

W̃ l
fi
= W l

fi
−W ∗l

fi
. Then, the weight hopping

can be equivalently written with respect to W̃ l
fi

as −κouterεiW̃ l
fi
/‖W̃ l

fi
‖. Under this consideration

the modified updating law is rewritten as Ẇ l
fi
=

−γ1
(
Xi
)T ξsl(x)−κouterεiW̃ l

fi
/‖W̃ l

fi
‖. With this up-

dating law it can be easily verified that eq. (45) be-
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comes

V̇ ≤
−[‖ξ‖ ‖ζ‖][λmin(K)− �1 −�1

0 λmin(K)

][‖ξ‖
‖ζ‖

]
−Θ f −Θg (46)

with Θ f being a positive constant expressed

as Θ f = ∑κouterεi

(
(W̃ l

fi
)T )W̃ l

fi
)
)
/‖W̃ l

fi
‖ ≥ 0 for all

time, where the summation includes all weight vec-

tors which require hopping. Therefore, the nega-

tivity of V̇ is actually strengthened due to the last

negative terms.

Lemma 3 imply that the hopping modifications

(32), (37) guarantees boundedness of the weights,

without affecting the rest of the stability properties

established in the absence of hopping. �

Hence, we can prove the following theorem.

Theorem 5 The control law (21) and (22) together

with the updating laws (32) and (37) guarantee the

following properties

1. ξ,‖x‖ ,Wf ,Wg,ζ, ξ̇ ∈ L∞, ‖ξ‖ ∈ L2

2. limt→∞ ξ(t) = 0, limt→∞ ‖x(t)‖= 0

3. limt→∞Ẇf (t) = 0, limt→∞Ẇg(t) = 0

provided that λmin(K)≥ �1.

Proof From Eq. (44) we have that V ∈ L∞ which

implies ξ,W̃f ,W̃g ∈ L∞. Furthermore Wf = W̃f +
W ∗

f ∈ L∞ and Wg = W̃g +W ∗
g ∈ L∞. Since, ξ =

ζ− x and ζ, ξ ∈ L∞ this in turn implies that ‖x‖ ∈
L∞. Moreover, since V is a monotone decreas-

ing function of time and bounded from below,

limt→∞V (t) = V∞ exists so by integrating V̇ from

0 to ∞ we have

(λmin (K)− l1)
∞∫

0

‖ξ‖2 dt + λmin (K)
∞∫

0

‖ζ‖2 dt −

�1

∞∫

0

‖ξ‖‖ζ‖dt = |V (0)−V∞|< ∞

which implies that ‖ξ‖ ∈ L2. We also have that

ξ̇=−Kξ+XfW̃f S f (x)+XgW̃gSg(x)u−ω(x).

Hence and since u,‖x‖ ∈ L∞ ξ̇ ∈ L∞, the sigmoidals

are bounded by definition, W̃f ,W̃g ∈ L∞ and As-

sumption 5 hold, so since ξ ∈ L2 ∩ L∞ and ξ̇ ∈
L∞, applying Barbalat’s Lemma [9] we conclude

that limt→∞ ξ(t) = 0. Now, using the boundedness

of u,S f (x),Sg(x),x and the convergence of ξ(t) to

zero, we have that Ẇf ,Ẇg also converge to zero.

Hence and since ζ(t) also converges to zero, we

have that

limt→∞ x(t) = limt→∞ ζ(t)− limt→∞ ξ(t) = 0

Thus,

limt→∞ ‖x(t)‖= 0.

�

Remark 1 Inequality λmin(K) ≥ �1 shows how the
design constant K should be selected, in order to
guarantee convergence of the state x to zero, even
in the presence of modeling error terms which are
not uniformly bounded a priori, as assumption 5 im-
plies. The value of K becomes large as we allow
for large model imperfections but K is implemented
as a gain in the construction of ζ̇ and for practical
reasons it cannot take arbitrarily large values. This
leads to a compromise between the value of K and
the maximum allowable modeling error terms.

4.2.3 The Modeling Error at Zero Case

In the subsection (4.2.2), we have assumed that

the modeling error term satisfies the following con-

dition

‖ω(x,u)‖ ≤ l′1 ‖x‖+ l′′1 ‖u‖

which implies that the modeling error becomes

zero when ‖x‖= 0 and we have proven convergence

of the state x to zero, plus boundedness of all signals

in the closed-loop. In this subsection however, we

examine the more general case which is described

by the following assumption.

Assumption 6 The modeling error term satisfies

‖ω(x,u)‖ ≤ l0 + l′1 ‖x‖+ l′′1 ‖u‖

Having made this assumption, we now allow

a not-necessarily-known modeling error l0 	= 0 at

zero. Furthermore, as stated previously, we can find

an a priori known constant lu > 0, such that
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‖u‖ ≤ lu ‖x‖

thus making

‖ω(x,u)‖ ≡ ‖ω(x)‖

and Assumption 6 equivalent to

‖ω(x)‖ ≤ l0 + l1 ‖x‖ (47)

where

l1 = l′1 + l′′1 lu (48)

is a positive constant. Employing (35), Eq. (27)

becomes

V̇ ≤ −λmin (K)‖ξ‖2−λmin (K)‖ζ‖2

+‖ξ‖ [l0 + l1 ‖x‖]
≤ −λmin (K)‖ξ‖2−λmin (K)‖ζ‖2

+l1 ‖ξ‖2 + l1 ‖ξ‖‖ζ‖+ l0 ‖ξ‖ . (49)

To continue, we need to state and prove the fol-

lowing lemma

Lemma 6 The control law

u =− [XgWgSg(x)]
+ [XfWf S f (x)+υ] (50)

υ= (K−A)x (51)

where the synaptic weight estimates Wf and Wg, are

adjusted according to equations (32), (37) guaran-

tee the following properties

1. ζ(t)≤ 0, ∀t ≥ 0

2. limt→∞ ζ(t) = 0 exponentially fast provided

that ζ(t)< 0.

Proof Observe that if we use the control laws (50),

(51), Eq. (20) becomes

ζ̇=−Kζ, ∀t ≥ 0

which is a homogeneous differential equation with

solution

ζ(t) = ζ(0)e−Kt

Hence, if ζ(0) which represents the initial value of

ζ(t), is chosen negative, we obtain

ζ(t)≤ 0 ∀t ≥ 0.

Moreover, ζ(t) converges to zero exponentially fast.

�

Hence, we can distinguish the following cases:

Case 1: If x ≥ 0 we have that ζ(t) ≥ ξ(t) but

ζ(t)≤ 0, ∀t ≥ 0 which implies that ‖ζ(t)‖≤ ‖ξ(t)‖.
So, we have

‖x‖ ≤ ‖ζ‖+‖ξ‖ ≤ 2‖ξ‖ . (52)

Therefore, Eq. (49) becomes

V̇ ≤ −λmin (K)‖ξ‖2−λmin (K)‖ζ‖2

+2l1 ‖ξ‖2 + l0 ‖ξ‖ (53)

≤ −(λmin (K)‖ξ‖−2l1 ‖ξ‖− l0)‖ξ‖
−λmin (K)‖ζ‖2 ≤ 0 (54)

provided that

‖ξ‖> l0
λmin (K)−2l1

(55)

with λmin (K)> 2l1.

Case 2: If x < 0 we have that ζ(t) < ξ(t) but

ζ(t)≤ 0, ∀t ≥ 0 which implies that ‖ζ(t)‖> ‖ξ(t)‖.
So, we have

‖x‖ ≤ ‖ζ‖+‖ξ‖ ≤ 2‖ζ‖ . (56)

Therefore, Eq. (49) becomes

V̇ ≤ −λmin (K)‖ξ‖2−λmin (K)‖ζ‖2

+2l1 ‖ξ‖‖ζ‖+ l0 ‖ξ‖ (57)

≤ −(λmin (K)‖ξ‖− l0)‖ξ‖
−(λmin (K)−2l1)‖ζ‖2 ≤ 0 (58)

provided that

‖ξ‖> l0
λmin (K)

(59)

and λmin (K)> 2l1.

Conclusively, ∀x ∈ Rn the Lyapunov candidate

function becomes negative when ‖ξ‖ > l0
λmin(K)−2l1

and λmin (K)> 2l1.

In the sequel, inequality (55) together with (52),

(56) demonstrate that the trajectories of ξ(t) and

x(t) are uniformly bounded with respect to the ar-

bitrarily small, (since K can be chosen sufficiently

large), sets Ξ and X shown below
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Ξ={
ξ(t) : ‖ξ(t)‖ ≤ 2l0

λmin(K)−2l1
, λmin (K)> 2l1 > 0

}
and

X =
{

x(t) : ‖x(t)‖ ≤ 2l0
λmin(K) , λmin (K)> 2l1 > 0

}
.

Thus, we have proven the following theorem:

Theorem 7 Consider the system (14) with the

modeling error term satisfying (35). Then the

control law (21), (22) together with the update

laws (32) and (37) guarantees the uniform ultimate

boundedness with respect to the sets

1.

Ξ=
{
ξ(t) : ‖ξ(t)‖ ≤ 2l0

λmin(K)−2l1
,

λmin (K)> 2l1 > 0 }

2.

X =
{

x(t) : ‖x(t)‖ ≤ 2l0
λmin(K) ,

λmin (K)> 2l1 > 0 }

Furthermore,

ξ̇=−Kξ+XfW̃f S f (x)+XgW̃gSg(x)u−ω(x).
Hence, since the boundedness of W̃f and W̃g is

assured by the use of the hopping algorithm and

ω(x) owing to (35) and Theorem 7, we conclude

that ξ̇ ∈ L∞.

Remark 2 The previous analysis reveals that in the
case where we have a modeling error different from
zero at ‖x‖ = 0, our adaptive regulator can guar-
antee at least uniform ultimate boundedness of all
signals in the closed loop. In particular, Theorem
7 shows that if l0 is sufficiently small, or if the de-
sign constant K is chosen such that λmin (K) > 2l1,
then ‖x(t)‖ can be arbitrarily close to zero and in
the limit as K → ∞, actually becomes zero but as
we stated in Remark 1, implementation issues con-
strain the maximum allowable value of K.

5 Simulation Results

To demonstrate the potency of the proposed

scheme we present simulation results which assume

modeling errors. So, we tested the ability of the

proposed direct control scheme to regulate a Dc

Motor, under the presence of modeling error dis-

tinguishing two cases. The first case defined as

“Complete Model Matching at Zero Case” where

the modeling error depends on the states and the

control inputs, while in the second case we have

“Modeling Error at Zero Case” where the model-

ing errors depends on the states, the control inputs

and a not-necessarily-known modeling error which

is of the known constant value different than zero.

All the simulation results present a comparison be-

tween the proposed method and a simple RHONN

direct controller [21], which shows off the perfor-

mance superiority of the proposed method.

5.1 Direct Control of DC Motor When We
Have “Complete Model Matching at
Zero Case”

We apply the proposed approach to control the

speed of a 1 KW DC motor with a normalized

model described by the following dynamical equa-

tions [21]

Ta
dIa
dt =−Ia−ΦΩ+Va

Tm
dΩ
dt =ΦIa−K0Ω−mL

Tf
dΦ
dt =−I f +Vf

Φ=
aIf

1+bIf
(60)

The states are chosen to be the armature current,

the angular speed and the stator flux, x =
[
IaΩΦ

]
.

As control inputs the armature and the field volt-

ages, u =
[
VaVf

]
are used. With this choice, we

have

⎡⎣ẋ1

ẋ2

ẋ3

⎤⎦=

⎡⎢⎣ − 1
Ta

x1− 1
Ta

x2x3
1

Tm
x1x3− K0

Tm
x2− mL

Tm

− 1
Tf

x3

a−βx3

⎤⎥⎦+

⎡⎢⎣
1
Ta

0

0 0

0 1
Tf

⎤⎥⎦[u1

u2

]
(61)

which is of a nonlinear, affine in the control form.

Assuming the existence of modeling errors, we

add disturbance terms in the two states x1 and x2 as

follows

ω(x1,u1) = 2x1 +2sin(10x1)+ sin(3u1)

ω(x2,u2) = 3x2 + sin(5x2)+ sin(2u2)

In many control schemes of the literature Vf is as-

sumed constant. This may naturally occur when the
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field is produced by a permanent magnet or when it

may be separately excited but is intentionally kept

constant. This assumption may facilitate things be-

cause if Vf is constant then Φ is constant and the

above nonlinear 3rd order system can be linearized

and reduced to a second order form having 2 states

(x1 = Ia and x2 = Ω), with the value Φ being in-

cluded as a constant parameter.

Ta
dIa
dt =−Ia−ΦΩ+Va

Tm
dΩ
dt =ΦIa−K0Ω−mL

In a more general case, however, Vf is not con-

sidered constant and this scheme can also be used

for armature and field weakening control of the sep-

arately excited Dc motor. Moreover, if the mo-

tor characteristics are not exactly known we may

consider that the nonlinear model is unknown and

therefore its control can be accomplished using the

proposed neuro-fuzzy approach. In this case, the

regulation problem of a DC motor is translated as

follows: Find a state feedback to force the angular

velocityΩ and the armature current Ia to go to zero,

while the magnetic flux varies.

Motivated by this simplification (2nd instead of

3rd), we first assume that the system is described,

within a degree of accuracy, by the 2nd order neuro-

fuzzy system of the form (12), where x1 = Ia and

x2 =Ω. So, the number of states is n = 2, the num-

ber of fuzzy output partitions of each fi is m = 5

with the ranges of f1 [-182.5667 , 0], f2 [-19.3627 ,

30.0566] and the depth of high order sigmoid terms

k = 5. In this case si(x) assume high order connec-

tion up to the second order. The number of fuzzy

partitions of each gii is selected to be m = 3 with

the ranges of g11 [148 , 150] and g22 [42 , 44], us-

ing only the first order sigmoid term.

However, in the simulations carried out, the ac-

tual system is simulated by using the complete set

of equations (61). The produced control law de-

scribed in (21) and (22) is applied to this system,

which in turn produces states x1,x2, which are in the

sequel used in the updating laws of the controller’s

weights.

We simulated a 1KW DC motor with parame-

ter values that can be seen in Table 1 and sampling

time 10−3 sec. In order our model to be equiva-

lent with RHONN’s regarding to other parameters

we have chosen the initial values of all variables

as [Ia Ω Φ] = [1 1 0.98], the initial weights

Wfi = [0], Wgi j = [1] and the updating learning rates

γ1 = 0.01 and γ2 = 25. Also, the parameters of the

sigmoidal terms were chosen to be a1 = 0.4, a2 = 5,

b1 = b2 = 1, c1 = c2 = 0, while the diagonal ele-

ments of matrix K were k1 = 5, k2 = 10.

As concerning comparison abilities Figure (5)

gives the evolution of the states x1 and x2, which

are the armature current and angular velocity of the

RHONN [21] (red line) and the proposed Fuzzy-

RHONN model (blue line), with time respectively

where we can observe that the RHONN Model has

oscillations, while the Fuzzy-RHONN has smooth

development going close to zero as expected. Also,

figures (6) and (7) show the evolution of control in-

puts and disturbances for RHONN (red line) and F-

RHONN (blue line) with time, respectively.

5.2 Direct Control of DC Motor When We
Have “Modeling Error at Zero Case”

Assuming the existence of modeling errors

again to the same Dc Motor, we add disturbance

terms in the two states x1 and x2 as follows

ω(x1,u1) = 3x1 + sin(0.1x1)+ sin(0.1u1)+1

ω(x2,u2) = 2x2 + sin(1000x2)+ sin(1000u2)+1

We performed three different simulations with vary-

ing values for the elements of matrix K, κi =
120,140,160 with i = 1,2 and κ1 = κ2.

As concerning comparison abilities figures (8),

(9) and (10) give the evolution of state x2, which

is the angular velocity of the RHONN [21] (red

line) and the proposed Fuzzy-RHONN (blue line)

models and the disturbance, with time, respectively.

It can be observed that the RHONN Model con-

verges to zero slower when compared to the pro-

posed adaptive control algorithm. Also, while K
changes and more precisely when its values are in-

creasing then our model converges to zero faster

any time and keeps peak values constant against

RHONN’s which have slower convergence and big-

ger peak values.



75ROBUSTIFYING ANALYSIS OF THE DIRECT ADAPTIVE CONTROL OF UNKNOWN. . .

Table 1. Parameter values for the DC motor.

Parameter Value

1
/

T a 148.88 sec−1

1
/

T m 42.91 sec−1

K0

/
T m 0.0129 N ·m/rad

Tf 31.88 sec
mL 0.0

a 2.6

β 1.6
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Figure 5. Evolution of armature current and angular velocity x1 and x2 respectively, for RHONN’s (red

line) and F-RHONN approach (blue line).
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Figure 6. Evolution of control inputs u1 and u2 respectively, for RHONN’s (red line) and F-RHONN

approach (blue line).
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Figure 7. Evolution of disturbances d(x1,u1) and d(x2,u2) respectively, for RHONN’s (red line) and

F-RHONN approach (blue line).
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Figure 8. Evolution of angular velocity x2 for Fuzzy-RHONN and RHONN Models when κi = 120.

0 0.1 0.2 0.3 0.4 0.5
−2

0

2

4

6

S
ta

te
 x

2

0 0.1 0.2 0.3 0.4 0.5
−5

0

5

10

15

Time (sec)

D
is

tu
rb

an
ce

 d
(x

2,
u2

)

Figure 9. Evolution of angular velocity x2 for Fuzzy-RHONN and RHONN Models when κi = 140.
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Figure 10. Evolution of angular velocity x2 for Fuzzy-RHONN and RHONN Models when κi = 160.

6 Conclusion

The robustifying analysis of a direct adaptive

control scheme was considered in this paper, aim-

ing at the regulation of nonlinear unknown plants.

The approach is based on a new Neuro-Fuzzy Dy-

namical Systems definition, which uses the concept

of Fuzzy Dynamical Systems (FDS) operating in

conjunction with High Order Neural Network (F-

HONN’s). Since the plant is considered unknown,

we propose its approximation by a special form of

an affine in the control fuzzy system (FDS) and in

the sequel the fuzzy rules are approximated by ap-

propriate HONN’s. The fuzzy-recurrent high or-

der neural networks are used as models of the un-

known plant, practically transforming the original

unknown system into a F-RHONN model which

is of the known structure, but contains a number

of unknown constant value parameters known as

synaptic weights. The proposed scheme does not

require a-priori experts’ information on the number

and type of input variable membership functions

making it less vulnerable to initial design assump-

tions, is computationally very fast and thus can be

used in several real-time engineering applications.

Weight updating laws for the involved HONN’s are

provided, which guarantee that the system states

reach zero exponentially fast, while keeping all sig-

nals in the closed loop bounded. A novel method

of parameter hopping developed for the first time

by the authors, assures the existence of the con-

trol signal and is incorporated in the weight updat-

ing law. Simulations illustrate the potency of the

method in controlling an unknown nonlinear multi-

variable plant. Compared to simple RHONN direct

control, the proposed method proves to be superior.
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