PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Visuo-tactile stimulated virtual mirror therapy (ViTaS-VMT) system for enhancing motor-related brain activities: Application on two amputees

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To enhance the degenerated brain signal of amputees on motor area, a visuo-tactile stimulated virtual mirror therapy system was developed. The system consists of a motion-tracking glove, a vibration motor, and a monitor-integrated table. The system can provide virtual hand illusion for body agency and combine visuo-tactile stimulation to induce body ownership on the virtual hand. The virtual hand then mimics the healthy hand like mirror therapy, and subjects perform grasping with both hands while observing the mirrored virtual hand on the amputated side. The training lasted three days, including the gradual exposure to the system to measure the difference in brain activity on the first day. We measured electroencephalogram (EEG) during training, and functional magnetic resonance imaging (fMRI) of grasping was measured before and after the training. Two amputees volunteered for this preliminary study. Both participants showed changes in motor-related brain activity, with consistent increases in event-related desynchronization (ERD) amplitude, particularly in the supplementary motor area (SMA) and primary motor cortex. These findings suggest the system’s potential to enhance motor-related neural processes. We believe that the results of this preliminary study have provided evidence that the proposed system can reproduce the learning process and that brain activation can be improved by using the system. Based on the results, a future study will expand the number of subjects and the duration of training to provide a quantitative clinical evaluation of the proposed system.
Twórcy
autor
  • Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
autor
  • Department of Medical Device, Korea Institute of Machinery and Materials, Daegu 42994, Republic of Korea
  • School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
autor
  • Department of Medical & Biological Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
autor
  • Department of Medical & Biological Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
autor
  • Department of Orthopaedic Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
  • Medical Device and Robot Institute, Kyungpook National University, Daegu 41566, Republic of Korea
autor
  • Department of Medical Device, Korea Institute of Machinery and Materials, Daegu 42994, Republic of Korea
Bibliografia
  • [1] Ribeiro J, Mota F, Cavalcante T, Nogueira I, Gondim V, Albuquerque V, et al. Analysis of man-machine interfaces in upper-limb prosthesis: a review. Robotics 2019;8(1):16.
  • [2] Cordella F, Ciancio AL, Sacchetti R, Davalli A, Cutti AG, Guglielmelli E, et al. Literature review on needs of upper limb prosthesis users. Front Neurosci 2016; 10:209.
  • [3] Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng 2019;16(1):011001.
  • [4] Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol 2008;7(11):1032-43.
  • [5] Tam WK, Wu T, Zhao Q, Keefer E, Yang Z. Human motor decoding from neural signals: a review. BMC Biomed Eng 2019;1(1):22.
  • [6] Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, et al. A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update. J Neural Eng 2018;15(3):031005.
  • [7] Pfurtscheller G, Lopes Da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 1999;110(11):1842-57.
  • [8] Neuper C, Wörtz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog Brain Res 2006;159:211-22.
  • [9] Tang Z, Sun S, Zhang S, Chen Y, Li C, Chen S. A brain-machine interface based on ERD/ERS for an upper-limb exoskeleton control. Sensors (Basel) 2016;16(12).
  • [10] Mohamed AK, Marwala T, John LR. Single-trial EEG discrimination between wrist and finger movement imagery and execution in a sensorimotor BCI. Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011;2011:6289-93.
  • [11] Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci U S A 2004; 101(51):17849-54.
  • [12] Guger C, Harkam W, Pfurtscheller G, Hertnaes C. Prosthetic control by an EEG-based brain-computer interface (BCI). AAATE 5th European Conference for the Advancement of Assistive Technology. 1999.
  • [13] Ang KK, Guan C, Chua KS, Ang BT, Kuah C, Wang C et al. A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation. Proceedings of the 31st annual international conference of the IEEE Engineering in Medicine and Biology Society: Engineering the future of biomedicine, EMBC 2009;2009:5981-4.
  • [14] Sarac M, Koyas E, Erdogan A, Cetin M, Patoglu V. Brain Computer Interface based robotic rehabilitation with online modification of task speed. IEEE Int Conf Rehabil Robot 2013;2013:6650423.
  • [15] Song M, Jeong H, Kim J, Jang SH, Kim J. An EEG-based asynchronous MI-BCI system to reduce false positives with a small number of channels for neurorehabilitation: A pilot study. Front Neurorobotics 2022;16:971547.
  • [16] Hortal E, Planelles D, Resquin F, Climent JM, Azorín JM, Pons JL. Using a brainmachine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions. J Neuroeng Rehabil 2015; 12(1):92.
  • [17] Miladinović A, Ajčević M, Jarmolowska J, Marusic U, Silveri G, Battaglini PP, et al. Performance of EEG Motor-Imagery based spatial filtering methods: a BCI study on Stroke patients. Procedia Comput Sci 2020;176:2840-8.
  • [18] Pfurtscheller G, Flotzinger D, Mohl W, Peltoranta M. Prediction of the side of hand movements from single-trial multi-channel EEG data using neural networks. Electroencephalogr Clin Neurophysiol 1992;82(4):313-5.
  • [19] Bai O, Rathi V, Lin P, Huang D, Battapady H, Fei DY, et al. Prediction of human voluntary movement before it occurs. Clin Neurophysiol 2011;122(2):364-72.
  • [20] Seeland A, Manca L, Kirchner F, Kirchner EA. Spatio-temporal comparison between ERD/ERS and MRCP-based movement prediction. In: In: BIOSIGNALS; Part of 8th International Joint Conference on Biomedical Engineering Systems and Technologies; 2015, 2015,. p. 2015.
  • [21] Wang K, Xu M, Wang Y, Zhang S, Chen L, Ming D. Enhance decoding of premovement EEG patterns for brain-computer interfaces. J Neural Eng 2020;17(1): 016033.
  • [22] Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G. How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans Neural Syst Rehabil Eng 2003;11(2):145-7.
  • [23] McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR. Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr 2000; 12(3):177-86.
  • [24] Duann JR, Chiou JC. A comparison of independent event-related desynchronization responses in motor-related brain areas to movement execution, movement imagery, and movement observation. PLoS One 2016;11 (9):e0162546.
  • [25] Jeong H, Song M, Oh S, Kim J, Kim J. Toward comparison of cortical activation with different motor learning methods using event-related design: EEG-fNIRS study. Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2019;2019:6339-42.
  • [26] Mulder T. Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transm (Vienna) 2007;114(10):1265-78.
  • [27] Sun Y, Wei W, Luo Z, Gan H, Hu X. Improving motor imagery practice with synchronous action observation in stroke patients. Top Stroke Rehabil 2016;23 (4):245-53.
  • [28] Ertelt D, Small S, Solodkin A, Dettmers C, McNamara A, Binkofski F, et al. Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage 2007;36(Suppl 2):T164-73.
  • [29] Kaneko N, Masugi Y, Yokoyama H, Nakazawa K. Difference in phase modulation of corticospinal excitability during the observation of the action of walking, with and without motor imagery. Neuroreport 2018;29(3):169-73.
  • [30] Williams SE. Comparing movement imagery and action observation as techniques to increase imagery ability. Psychol Sport Exer 2019;44:99-106.
  • [31] Liang S, Choi KS, Qin J, Pang WM, Wang Q, Heng PA. Improving the discrimination of hand motor imagery via virtual reality based visual guidance. Comput Methods Programs Biomed 2016;132:63-74.
  • [32] Sollfrank T, Hart D, Goodsell R, Foster J, Tan T. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery. Front Hum Neurosci 2015;9(AUGUST):463.
  • [33] Botvinick M, Cohen J. Rubber hands ’feel’ touch that eyes see;8. In Nature 1998; 391(6669):756.
  • [34] Song M, Kim J. A paradigm to enhance motor imagery using rubber hand illusion induced by Visuo-tactile stimulus. IEEE Trans Neural Syst Rehabil Eng 2019;27 (3):477-86.
  • [35] Sambo CF, Forster B. An ERP investigation on visuotactile interactions in peripersonal and extrapersonal space: evidence for the spatial rule. J Cogn Neurosci 2009;21(8):1550-9.
  • [36] Kalckert A, Ehrsson HH. Moving a rubber hand that feels like your own: A dissociation of ownership and agency. Front Hum Neurosci 2012;6:40.
  • [37] Tsakiris M, Prabhu G, Haggard P. Having a body versus moving your body: how agency structures body-ownership. Conscious Cogn 2006;15(2):423-32.
  • [38] Perez-Marcos D, Slater M, Sanchez-Vives MV. Inducing a virtual hand ownership illusion through a brain-computer interface. Neuroreport 2009;20(6):589-94.
  • [39] Choi JW, Huh S, Jo S. Improving performance in motor imagery BCI-based control applications via virtually embodied feedback. Comput Biol Med 2020; 127:104079.
  • [40] Škola F, Tinková S, Liarokapis F. Progressive training for motor imagery brain-computer interfaces using Gamification and virtual reality embodiment. Front Hum Neurosci 2019;13:329.
  • [41] Christ O, Reiner M. Perspectives and possible applications of the rubber hand and virtual hand illusion in non-invasive rehabilitation: technological improvements and their consequences. Neurosci Biobehav Rev 2014;44:33-44.
  • [42] Choi JW, Kim BH, Huh S, Jo S. Observing actions through immersive virtual reality enhances motor imagery training. IEEE Trans Neural Syst Rehabil Eng 2020;28(7):1614-22.
  • [43] Jeong H, Kim J. Development of a guidance system for motor imagery enhancement using the virtual hand illusion. Sensors (Basel) 2021;21(6).
  • [44] Makin TR, Filippini N, Duff EP, Henderson Slater D, Tracey I, Johansen-Berg H. Network-level reorganisation of functional connectivity following arm amputation. Neuroimage 2015;114:217-25.
  • [45] Ezendam D, Bongers RM, Jannink MJ. Systematic review of the effectiveness of mirror therapy in upper extremity function. Disabil Rehabil 2009;31(26): 2135-49.
  • [46] Chan BL, Witt R, Charrow AP, Magee A, Howard R, Pasquina PF, et al. Mirror therapy for phantom limb pain. N Engl J Med 2007;357(21):2206-7.
  • [47] Foell J, Bekrater-Bodmann R, Diers M, Flor H. Mirror therapy for phantom limb pain: brain changes and the role of body representation. Eur J Pain 2014;18(5): 729-39.
  • [48] Kim SY, Kim YY. Mirror therapy for phantom limb pain. Korean J Pain 2012;25 (4):272-4.
  • [49] Imaizumi S, Asai T, Koyama S. Agency over phantom limb enhanced by shortterm mirror therapy. Front Hum Neurosci 2017;11:483.
  • [50] Weber LM, Nilsen DM, Gillen G, Yoon J, Stein J. Immersive virtual reality mirror therapy for upper limb recovery after stroke: A pilot study. Am J Phys Med Rehabil 2019;98(9):783-8.
  • [51] Heinrich C, Morkisch N, Langlotz T, Regenbrecht H, Dohle C. Feasibility and psychophysical effects of immersive virtual reality-based mirror therapy. J Neuroeng Rehabil 2022;19(1):107.
  • [52] Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comp Intell Neurosci 2011;2011:156869.
  • [53] Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM. 3D statistical neuroanatomical models from 305 MRI volumes. In:, IEEE Nuclear Science Symposium & Medical Imaging Conference. 1994; 1994.
  • [54] Dannhauer M, Lanfer B, Wolters CH, Knösche TR. Modeling of the human skull in EEG source analysis. Hum Brain Mapp 2011;32(9):1383-99.
  • [55] Cho JH, Vorwerk J, Wolters CH, Knösche TR. Influence of the head model on EEG and MEG source connectivity analyses. Neuroimage 2015;110:60-77.
  • [56] Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004;134(1):9-21.
  • [57] Kothe CA, Makeig S. BCILAB: A platform for brain-computer interface development. J Neural Eng 2013;10(5):056014.
  • [58] Mullen T, Kothe C, Chi YM, Ojeda A, Kerth T, Makeig S, et al. Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG. Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2013;2013:2184-7.
  • [59] Chang CY, Hsu SH, Pion-Tonachini L, Jung TP. Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings. IEEE Trans Bio Med Eng 2020;67(4):1114-21.
  • [60] Palmer JA, Makeig S, Kreutz-Delgado K, Rao BD. Newton method for the ICA mixture model. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing Proceedings 2008:1805-8.
  • [61] Palmer J, Kreutz-Delgado K, Makeig S. AMICA: an adaptive mixture of independent component analyzers with shared components. San Diego, CA [technical report]. Swartz Center for Computational Neuroscience; 2011.
  • [62] Delorme A, Palmer J, Onton J, Oostenveld R, Makeig S. Independent EEG sources are dipolar. PLoS One 2012;7(2):e30135.
  • [63] Hsu SH, Pion-Tonachini L, Palmer J, Miyakoshi M, Makeig S, Jung TP. Modeling brain dynamic state changes with adaptive mixture independent component analysis. Neuroimage 2018;183:47-61.
  • [64] Makeig S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr Clin Neurophysiol 1993;86(4):283-93.
  • [65] Ashburner J, Barnes G, Chen CC, Daunizeau J, Flandin G, Friston K, et al. SPM12 manual Wellcome Centre for Human Neuroimaging. London, UK: Institute of Neurology, UCL; 2014.
  • [66] Friston KJ, Josephs O, Rees G, Turner R. Nonlinear event-related responses in fMRI. Magn Reson Med 1998;39(1):41-52.
  • [67] Henson R, Friston K. Convolution models for fMRI. In: Statistical parametric mapping: the analysis of functional brain images. 2007.
  • [68] Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RS. Statistical parametric maps in functional imaging: A general linear approach. Hum Brain Mapp 1994;2(4):189-210.
  • [69] Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, et al. Analysis of fMRI time-series revisited. Neuroimage 1995;2(1):45-53.
  • [70] Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A 2016;113(28): 7900-5.
  • [71] Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM. The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A 2002;99(22):14518-23.
  • [72] Rizzolatti G, Luppino G, Matelli M. The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 1998;106(4):283-96.
  • [73] Garey JL, Brodmann’s L. Localisation in the Cerebral Cortex 1999.
  • [74] Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 2003;19(3):1233-9.
  • [75] Maldjian JA, Laurienti PJ, Burdette JH. Precentral gyrus discrepancy in electronic versions of the Talairach atlas. Neuroimage 2004;21(1):450-5.
  • [76] Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15(1):273-89.
  • [77] Wang Z. A hybrid SVM-GLM approach for fMRI data analysis. Neuroimage 2009; 46(3):608-15.
  • [78] Hyvärinen J. Posterior parietal lobe of the primate brain. Physiol Rev 1982;62(3): 1060-129.
  • [79] Rolls ET, Deco G, Huang CC, Feng J. The human posterior parietal cortex: effective connectome, and its relation to function. Cereb Cortex 2023;33(6): 3142-70.
  • [80] Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 2001;13(2):400-4.
  • [81] Culham JC, Valyear KF. Human parietal cortex in action. Curr Opin Neurobiol 2006;16(2):205-12.
  • [82] Urgen BA, Orban GA. The unique role of parietal cortex in action observation: functional organization for communicative and manipulative actions. Neuroimage 2021;237:118220.
  • [83] Eaves DL, Behmer LP, Vogt S. EEG and behavioural correlates of different forms of motor imagery during action observation in rhythmical actions. Brain Cogn 2016;106:90-103.
  • [84] Andersen RA. Visual and eye movement functions of the posterior parietal cortex. Annu Rev Neurosci 1989;12:377-403.
  • [85] Buneo CA, Andersen RA. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 2006;44(13):2594-606.
  • [86] Guerrero-Mendez CD, Ruiz-Olaya AF. Coherence-based connectivity analysis of EEG and EMG signals during reach-to-grasp movement involving two weights. Brain Comput Interfaces 2022;9(3):140-54.
  • [87] Pfurtscheller G. Functional brain imaging based on ERD/ERS. Vision Res 2001;41 (10-11):1257-60.
  • [88] Erbil N, Ungan P. Changes in the alpha and beta amplitudes of the central EEG during the onset, continuation, and offset of long-duration repetitive hand movements. Brain Res 2007;1169(1):44-56.
  • [89] Kermadi I, Liu Y, Rouiller EM. Do bimanual motor actions involve the dorsal premotor (PMd), cingulate (CMA) and posterior parietal (PPC) cortices? Comparison with primary and supplementary motor cortical areas. Somatosens Mot Res 2000;17(3):255-71.
  • [90] Le A, Vesia M, Yan X, Crawford JD, Niemeier M. Parietal area BA7 integrates motor programs for reaching, grasping, and bimanual coordination. J Neurophysiol 2017;117(2):624-36.
  • [91] Jeannerod M, Decety J, Michel F. Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia 1994;32(4):369-80.
  • [92] Zentgraf K, Stark R, Reiser M, Künzell S, Schienle A, Kirsch P, et al. Differential activation of pre-SMA and SMA proper during action observation: effects of instructions. Neuroimage 2005;26(3):662-72.
  • [93] Mukamel R, Ekstrom AD, Kaplan J, Iacoboni M, Fried I. Single-neuron responses in humans during execution and observation of actions. Curr Biol 2010;20(8): 750-6.
  • [94] Eaves DL, Riach M, Holmes PS, Wright DJ. Motor imagery during action observation: A brief review of evidence, theory and future research opportunities. Front Neurosci 2016;10(V):514.
  • [95] Nedelko V, Hassa T, Hamzei F, Schoenfeld MA, Dettmers C. Action imagery combined with action observation activates more corticomotor regions than action observation alone. J Neurol Phys Ther 2012;36(4):182-8.
  • [96] Kazennikov O, Hyland B, Corboz M, Babalian A, Rouiller EM, Wiesendanger M. Neural activity of supplementary and primary motor areas in monkeys and its relation to bimanual and unimanual movement sequences. Neuroscience 1999;89 (3):661-74.
  • [97] Kermadi I, Liu Y, Tempini A, Rouiller EM. Effects of reversible inactivation of the supplementary motor area (SMA) on unimanual grasp and bimanual pull and grasp performance in monkeys. Somatosens Mot Res 1997;14(4):268-80.
  • [98] Walsh RR, Small SL, Chen EE, Solodkin A. Network activation during bimanual movements in humans. Neuroimage 2008;43(3):540-53.
  • [99] Padilla MA, Pabon S, Frisoli A, Sotgiu E, Loconsole C, Bergamasco M. Hand and arm ownership illusion through virtual reality physical interaction and vibrotactile stimulations. In: Lect Notes Comput Sci (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 2010. p. 194-9.
  • [100] Pozeg P, Palluel E, Ronchi R, Solcà M, Al-Khodairy AW, Jordan X, et al. Virtual reality improves embodiment and neuropathic pain caused by spinal cord injury. Neurology 2017;89(18):1894-903.
  • [101] Lange B, Flynn S, Proffitt R, Chang CY, Rizzo AS. Development of an interactive game-based rehabilitation tool for dynamic balance training. Top Stroke Rehabil 2010;17(5):345-52.
  • [102] Bonnechère B, Jansen B, Omelina L, Van Sint JS. The use of commercial video games in rehabilitation: A systematic review. Int J Rehabil Res 2016;39(4): 277-90.
  • [103] Lange B, Koenig S, McConnell E, Chang CY, Juang R, Suma E, et al. Interactive game-based rehabilitation using the Microsoft Kinect. In: In: Proceedings of the - IEEE virtual reality; 2012, 2012,. p. 171-2.
  • [104] Betker AL, Szturm T, Moussavi ZK, Nett C. Video game-based exercises for balance rehabilitation: A single-subject design. Arch Phys Med Rehabil 2006;87 (8):1141-9.
  • [105] Zhu M, Sun Z, Zhang Z, Shi Q, He T, Liu H, et al. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci Adv 2020;6(19):eaaz8693.
  • [106] Frisoli A, Salsedo F, Bergamasco M, Rossi B, Carboncini MC. A force-feedback exoskeleton for upper-limb rehabilitation in virtual reality. Appl Bionics Biomech 2009;6(2):115-26.
  • [107] Popescu VG, Burdea GC, Bouzit M, Hentz VR. A virtual-reality-based telerehabilitation system with force feedback. IEEE Trans Inf Technol Biomed 2000;4(1):45-51.
  • [108] Guerrero-Mendez CD, Blanco-Diaz CF, Ruiz-Olaya AF, López-Delis A, JaramilloIsaza S, Andrade RM, et al. EEG motor imagery classification using deep learning approaches in naïve BCI users. Biomed Phys Eng Express 2023;9(4):045029.
  • [109] Golaszewski S, Frey V, Thomschewski A, Sebastianelli L, Versace V, Saltuari L, et al. Neural mechanisms underlying the rubber hand illusion: a systematic review of related neurophysiological studies. Brain Behav 2021;11(8):e02124.
  • [110] Inamoto T, Ueda M, Ueno K, Shiroma C, Morita R, Naito Y, et al. Motor-related mu/beta rhythm in older adults: a comprehensive review. Brain Sci 2023;13(5): 751.
  • [111] Yu B, You Y, Li Y, Chen J, Zhou H, Wang J, et al. Effects of intermittent visual feedback on EEG characteristics during motor preparation and execution in a goal-directed task. Front Hum Neurosci 2024;18:1371476.
  • [112] Li X, Wang L, Miao S, Yue Z, Tang Z, Su L, et al. Sensorimotor rhythm-brain computer interface with audio-cue, motor observation and multisensory feedback for upper-limb stroke rehabilitation: a controlled study. Front Neurosci 2022;16: 808830.
  • [113] Browne JD, Fraiser R, Cai Y, Leung D, Leung A, Vaninetti M. Unveiling the phantom: what neuroimaging has taught us about phantom limb pain. Brain Behav 2022;12(3):e2509.
  • [114] Herrador Colmenero L, Perez Marmol JM, Martí-García C, Querol Zaldivar MD, Tapia Haro RM, Castro Sánchez AM, et al. Effectiveness of mirror therapy, motor imagery, and virtual feedback on phantom limb pain following amputation: a systematic review. Prosthet Orthot Int 2018;42(3):288-98.
  • [115] Lin CW, Kuo LC, Lin YC, Su FC, Lin YA, Hsu HY. Development and testing of a virtual reality mirror therapy system for the sensorimotor performance of upper extremity: a pilot randomized controlled trial. IEEE Access 2021;9:14725-34.
  • [116] Hsu HY, Kuo LC, Lin YC, Su FC, Yang TH, Lin CW. Effects of a virtual reality-based mirror therapy program on improving sensorimotor function of hands in chronic stroke patients: a randomized controlled trial. Neurorehabil Neural Repair 2022; 36(6):335-45.
  • [117] Hali K, Manzo MA, Koucheki R, Wunder JS, Jenkinson RJ, Mayo AL, et al. Use of virtual reality for the management of phantom limb pain: a systematic review. Disabil Rehabil 2024;46(4):629-36.
  • [118] Chang WK, Lim H, Park SH, Lim C, Paik NJ, Kim WS, et al. Effect of immersive virtual mirror visual feedback on mu suppression and coherence in motor and parietal cortex in stroke. Sci Rep 2023;13(1):12514.
  • [119] De Araújo AVL, Neiva JFDO, Monteiro CBDM, Magalhães FH. Efficacy of virtual reality rehabilitation after spinal cord injury: a systematic review. Biomed Res Int 2019;2019(1):7106951.
  • [120] Chi B, Chau B, Yeo E, Ta P. Virtual reality for spinal cord injury-associated neuropathic pain: systematic review. Ann Phys Rehabil Med 2019;62(1):49-57.
  • [121] Anguelova GV, Sturma A, Aszmann O, Yildirim MS, Boesendorfer A, Schmidbauer V, et al. Reduced interhemispheric connectivity in traumatic brachial plexopathies after bionic reconstruction. Neuroimage 2025;305:120989.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be8c839b-d13e-43a5-aae5-19d4003c114b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.