PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Power characteristics of inline rotor-stators with different head designs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In-line rotor-stators are widely used for power intensive industrial applications, such as deagglomeration, emulsification. There is limited information on characteristic power numbers for different designs which can be used to calculate the average power input as a means to evaluate process performance. This study made use of 18 different rotor-stators, 17 of which were toothed designs with different geometry, and also a commercially available design, with the objectives of evaluating the applicability of different expressions for characteristic power numbers and establishing the effects of geometric variations on the power input. The expression P = Po1 ρN3 D5 + Po2 ρN2 D2Q is found to account for the experimental data over a wide range of operating conditions. Rotor diameter was found to have the most prominent effect on the power input: an increase in rotor diameter from 119.6 to 123.34 mm resulted in an increase in the average power draw. The effect of rotor diameter examined with geometrically similar set ups reducing the diameter from 123.34 to 61.44 mm, for which the mixing chamber was also proportionately smaller, showed a decrease in the power input at a given speed and flowrate as well. The effects relating to the percentage of open area of the stator and number of rotor teeth were less obvious. Increasing the open area resulted in an increase in the power input – an effect which could be observed more clearly as the flowrate (1 to 4 l/s) and rotor speed (at 2000 and 3000 rpm) were also increased. Increasing the number of stator teeth increased the power input and this effect was more prominent when operating at the highest rotor speed of 3000 rpm and at low flowrates (1–2 l/s).
Rocznik
Strony
91–--104
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Loughborough University, School of Chemical Engineering, Loughborough LE11 3TT, UK
  • Independent Consultant
  • Loughborough University, School of Chemical Engineering, Loughborough LE11 3TT, UK
Bibliografia
  • 1. Atiemo-Obeng V.A., Calabrese R.V., 2004. Rotor–stator mixing devices, In: Paul E.L., Atiemo-Obeng V.A., Kresta,S.M. (Eds.), Handbook of industrial mixing. John Wiley & Sons, Inc., Hoboken, NJ, USA, 479–505. DOI: 10.1002/0471451452.ch8.
  • 2. Baldyga J., Kowalski A.J., Cooke M., Jasinska M., 2007. Investigation of micromixing in a rotor-stator mixer. Chem. Process Eng., 28 (4), 867-877.
  • 3. Carrillo De Hert S., Rodgers T.L., 2017. Continuous, recycle and batch emulsification kinetics using a high-shear mixer. Chem. Eng. Sci., 167, 265–277. DOI: 10.1016/j.ces.2017.04.020.
  • 4. Cooke M., Rodgers T.L., Kowalski A.J., 2011. Power consumption characteristics of an in-line silverson high shear mixer. AIChE J., 58, 1683-1692. DOI: 10.1002/aic.12703.
  • 5. Doucet L., Ascanio G., Tanguy P.A., 2005. Hydrodynamics characterisation of rotor-stator mixer with viscous fluids. Chem. Eng. Res. Des., 83, 1186-1195. DOI: 10.1205/cherd.04254.
  • 6. Håkansson, A., Chaudhry, Z., Innings, F., 2016. Model emulsions to study the mechanism of industrial mayonnaise emulsification. Food Bioprod. Process., 98, 189–195. DOI: 10.1016/j.fbp.2016.01.011.
  • 7. Hall S., Cooke M., Pacek A.W., Kowalski A J., Rothman D., 2011. Scaling up of silverson rotor–stator mixers. Can. J. Chem. Eng., 89, 1040-1050. DOI: 10.1002/cjce.20556.
  • 8. Kamaly S.W., Tarleton A.C., Özcan-Taşkın N.G., 2017. Dispersion of clusters of nanoscale silica particles using batch rotor-stators. Adv. Powder Technol., 28, 2357-2365. DOI: 10.1016/j.apt.2017.06.017.
  • 9. Meeuwse M., van der Schaaf J., Kuster B. F. M., Schouten,J. C., 2010. Gas–liquid mass transfer in a rotor–stator spinning disc reactor. Chem. Eng. Sci., 65, 466-471. DOI: 10.1016/j.ces.2009.06.006.
  • 10. Özcan-Taşkın G., Kubicki D., Padron G., 2011. Power and flow characteristics of three rotor-stator heads. Can. J. Chem. Eng., 89, 1005-1017. DOI: 10.1002/cjce.20553.
  • 11. Özcan-Taşkin G., Padron G., Voelkel A., 2009. Effect of particle type on the mechanisms of break up of nanoscale particle clusters. Chem. Eng. Res. Des., 87, 468-473. DOI: 10.1016/j.cherd.2008.12.012.
  • 12. Özcan-Taşkin N.G., Padron G.A., Kubicki D., 2016. Comparative performance of in-line rotor-stators for deag-glomeration processes. Chem. Eng. Sci., 156, 186–196. DOI: 10.1016/j.ces.2016.09.023.
  • 13. Padron G.A., 2005. Effect of surfactants on drop size distribution in a batch, rotor-stator mixer. PhD Thesis, University of Maryland.
  • 14. Padron G.A., Eagles W.P., Őzcan-Taşkin G.N., McLeod G., Xie L., 2008. Effect of particle properties on the breakup of nanoparticle clusters using an in-line rotor-stator. J. Dispersion Sci. Technol., 29, 4, 580-586. DOI: 10.1080/01932690701729237.
  • 15. Padron G., 2001. Measurement and comparison of power draw in batch rotor-stator mixers. MSc Thesis, Department of Chemical Engineering, University of Maryland.
  • 16. Padron G.A., Özcan-Taşkın N.G., 2018. Particle de-agglomeration with an in-line rotor-stator mixer at different solids loadings and viscosities. Chem. Eng. Res. Des., 32, 913-921. DOI: 10.1016/j.cherd.2018.01.041.
  • 17. Qin H., Xu Q., Li W., Dang,X., Han Y., Lei K., Zhou L., Zhang J., 2017. Effect of stator geometry on the emulsification and extraction in the inline single-row blade-screen high shear mixer. Ind. Eng. Chem. Res., 56, 9376-9388. DOI: 10.1021/acs.iecr.7b01362.
  • 18. Schönstedt B., Jacob H., Schilde C., Kwade A., 2015. Scale-up of the power draw of inline-rotor–stator mixers with high throughput. Chem. Eng. Res. Des., 93, 12-20. DOI: 10.1016/j.cherd.2014.04.004.
  • 19. Sparks T., 1996. Fluid mixing in rotor–stators. PhD Thesis, Cranfield University, Cranfield, UK.
  • 20. Utomo A., Baker M., Pacek A., 2009. The effect of stator geometry on the flow pattern and energy dissipation rate in a rotor–stator mixer. Chem. Eng. Res. Des., 87, 533–542. DOI: 10.1016/j.cherd.2008.12.011.
  • 21. van Kouwen E.R., Winkenwerder W., Brentzel Z., Joyce B., Pagano T., Jovic S., Bargeman G., and van der Schaaf J., 2021. The mixing sensitivity of toluene and ethylbenzene sulfonation using fuming sulfuric acid studied in a rotor-stator spinning disc reactor. Chem. Eng. Process., 160, 108303. DOI: 10.1016/j.cep.2021.108303.
  • 22. Vashisth V., Nigam K.D.P., Kumar V., 2021. Design and development of high shear mixers: Fundamentals, applications and recent progress. Chem. Eng. Sci., 232, 116296. DOI: 10.1016/j.ces.2020.116296.
  • 23. Yang L., Li W., Guo J., Li W., Wang B., Zhang M., Zhang J., 2020. Effects of rotor and stator geometry on dissolution process and power consumption in jet-flow high shear mixers. Front. Chem. Sci. Eng., 15, 384–398. DOI: 10.1007/s11705-020-1928-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be8b06b3-d604-4949-b05f-3cdfe3d70be2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.