PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal Cleaning and Melting of Fine Aluminium Alloy Chips

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Production waste is one of the major sources of aluminium for recycling. Depending on the waste sources, it can be directly melted in furnaces, pre-cleaned and then melted, or due to the small size of the material (powder or dust) left without remelting. The latter form of waste includes chips formed during mechanical cutting (sawing) of aluminium and its alloys. In this study, this type of chips (with the dimensions not exceeding 1 mm) were melted. The obtained results of laboratory tests have indicated that even chips of such small sizes pressed into cylindrical compacts can be remelted. The high recovery yield (up to 94%) and degree of metal coalescence (up to 100%) were achieved via thermal removal of impurities under controlled conditions of a gas atmosphere (argon or/and air), followed with consolidation of chips at a pressure of minimum 170 MPa and melting at 750oC with NaCl-KCl-Na3AlF6 salt flux.
Rocznik
Strony
91--96
Opis fizyczny
Bibliogr. 14 poz., fot., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Cracow, Poland
Bibliografia
  • [1] Boin, U. & Bertram, M. (2005). Melting Standardized Aluminum Scrap: A Mass Balance Model for Europe. Journal of Metals. 7, 26-33. DOI: 10.1007/s11837-005-0164-4.
  • [2] Rojas-Díaz, L.M., Verano-Jiménez, L.E., Muñoz-García, E., Esguerra-Arce, J. & Esguerra-Arce, A. (2020). Production and characterization of aluminum powder derived from mechanical saw chips and its processing through powder metallurgy. Powder Technology. 360, 301-311. DOI: 10.1016/j.powtec.2019.10.028.
  • [3] Kondej, D. & Gawęda, E. (2006). Explosion of metal dust on the example of dust. Bezpieczeństwo Pracy. 10, 12-15. (in Polish).
  • [4] Wan, B., Chen, W., Lu, T., Liu, F., Jiang, Z. & Mao, M. (2017). Review of solid state recycling of aluminum chips. Resources, Conservation & Recycling. 125, 37-47. DOI: 10.1016/j.resconrec.2017.06.004.
  • [5] Tahmasbi, K. & Mahmoodi, M. (2018). Evaluation of microstructure and mechanical properties of aluminum AA7022 produced by friction stir extrusion. Journal of Manufacturing Processes. 32, 151-159. DOI: 10.1016/j.jmapro.2018.02.008.
  • [6] Abd El Aal, M., Taha, M.A., Selmy, A.I., El-Gohry, A.M. & Kim, H.S. (2019). Solid state recycling of aluminium AA6061 alloy chips by hot extrusion. Materials Research Express. 6(3), 036525. DOI: 10.1088/2053-1591/aaf6e7.
  • [7] Chiba, R. & Yoshimura, M. (2015). Solid-state recycling of aluminium alloy swarf into c-channel by hot extrusion. Journal of Manufacturing Processes. 17, 1-8. DOI: 10.1016/j.jmapro.2014.10.002.
  • [8] Zhang, T., Ji, Z. & Wu, W. (2011). Effect of extrusion ratio on mechanical and corrosion properties of AZ31B alloys prepared by a solid recycling process, Materials & Designs. 32, 2742-2748. DOI: 10.1016/j.matdes.2011.01.012.
  • [9] Chiba, R., Nakamura, T. & Kuroda, M. (2011). Solid-state recycling of aluminium alloy swarf through cold profile extrusion and cold rolling. Journal of Materials Processing Technology. 211, 1878-1887. DOI: 10.1016/j.jmatprotec. 2011.06.010.
  • [10] Haase, M. & Tekkaya, A.E. (2015). Cold extrusion of hot extruded aluminum chips. Journal of Materials Processing Technology. 217, 356-367. DOI: 10.1016/j.jmatprotec. 2014.11.028.
  • [11] Gronostajski, J.Z., Kaczmar, J.W., Marciniak, H. & Matuszak, A. (1998). Production of composites from Al and AlMg2 alloy chips. Journal of Materials Processing Technology. 300, 37-41. DOI: 10.1016/s0924-0136(97) 00390-7.
  • [12] Da Costa, C.E., Zapata, W.C. & Parucker, M.L. (2003). Characterization of casting iron powder from recycled swarf. Journal of Materials Processing Technology. 143, 138-143. DOI: 10.1016/S0924-0136(03)00394-7.
  • [13] Xiao, Y. & Reuter, M.A. (2002). Recycling of Distributed Aluminium Turning Scrap, Minerals Engineering, 15, 963-970. DOI: 10.1016/S0892-6875(02)00137-1.
  • [14] Leitner, M., Leitner, T., Schmon, A., Aziz, K. & Pottlacher, G. (2017). Thermophysical Properties of Liquid Aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 48, 1-10. DOI: 10.1007/s11661-017-4053-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be88380a-fbdc-4689-8e11-11ee9f61897f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.