PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Chemia bioortogonalna : nowa perspektywa dla chemii organicznej

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Bioorthogonal chemistry : new perspective for organic chemistry
Języki publikacji
PL
Abstrakty
EN
This work is about bioorthogonal chemistry as a chemistry of reactions taking place in the living, in particular human, organism environment. In the search for reactions that can occur under conditions, the focus is mainly on the reactions of molecules that do not occur naturally in the body. Then, to have any application, generally for the purpose of using this reactions to locate the accumulation spotes of the selected substance, one molekule is covalently bonded to the biomarker molecule, the second binds to the indicator molecule, which is frequently fluorescein. Among a numerous examples of reactions that were designed during the short history of bioorthogonal chemistry, there are mainly reactions involving organic azides, which are not naturalny present in the human body. An example of such a reaction is the Staudinger ligation. Subsequent modifications include mainly the 1,3-dipolar addition of azides to alkynes, catalyzed by copper(I) ions. The instability and toxicity of this catalyst has forced further innovations in bioorthogonal reactions. One of them is the use of alkynes with high angular stress, which causes a significant reduction in the activation energy of the process, that it is unnecessary to use a catalyst. Another example of the bioorthogonal reactions are Diels-Alder reactions. The interest in these reactions is not diminishing for several reasons. One of them is the fact that as a result of a simple reaction two new carbon-carbon bonds (or others, for the HDA reaction) occur. Furthermore, many of these reactions occur at standard temperature, without additional heating. Moreover, the possibility of numerous modifications of the skeleton and functional groups and the substituents of dienes and dienophils facilitates carrying out these reactions in the aquatic environment. At the end, the article presents examples of the application of cyclooaddition reactions in bioorthogonal chemistry.
Rocznik
Strony
703--722
Opis fizyczny
Bibliogr. 27 poz., rys., schem.
Twórcy
autor
  • Wydział Chemii Uniwersytetu Jagiellońskiego w Krakowie, ul. Gronostajowa 2, 30-387 Kraków
Bibliografia
  • [1] T. Carell, M. Vrabel, Top. Curr. Chem., 2016, 374, 1.
  • [2] R.Y. Tsien, Annu., Rev. Biochem., 1998, 67, 509.
  • [3] E.M. Sletten, C.R. Bertozzi, Angew. Chem. Int., 2009, 48, 6974.
  • [4] W. Russ Algar, P. Dawson, I.L. Mednitz, Chemoselective and bioorthogonal ligation reactions, concepts and applications, Wiley-VCH, 2017, 14.
  • [5] H. Staudinger, J. Meyer, Helv. Chim. Acta, 1919, 2, 635.
  • [6] E. Saxon, C.R. Bertozzi, Science, 2000, 287, 2007.
  • [7] R. Huisgen, Angew. Chem., 1963, 13, 604.
  • [8] D.M. Patterson, L.A. Nazarova, J.A. Prescher, Chem. Biol., 2014, 9, 592.
  • [9] V.V. Rostovtsev, G.L. Green, V.V. Fokin, K.B. Sharpless, Angew. Chem. Int. Ed., 2002, 41, 2596.722
  • [10] R. Huisgen, J. Org. Chem., 1976, 41, 403.
  • [11] W.C. Tornoe, C. Christensen, M. Meldal, J. Org. Chem., 2002, 67, 3057.
  • [12] J. Dommerholt, F.P.J.T. Rutjes, F.L. van Delft, Top. Curr. Chem., 2016, 16, 374.
  • [13] E.M. Sletten, C.R. Bertozzi, Org. Lett., 2008, 10, 14.
  • [14] J. McMurry, Chemia organiczna, T. 3, Wydawnictwo Naukowe PWN Warszawa, str. 515.
  • [15] J. Clayden, N. Greeves, S. Warren, Chemia organiczna, T. 3, Wydawnictwo Naukowo-Techniczne Warszawa, 2010, str. 137.
  • [16] D.S. Rideout, R. Breslow, J. Am. Chem. Soc., 1980, 102, 7816.
  • [17] N.K. Devaraj, R. Weissleder, S.A. Hilderbrand, Bioconjugate Chem., 2008, 19, 2297.
  • [18] M.L. Blackman, M. Royzen, J.M. Fox, J. Am. Chem. Soc., 2008, 130, 13518.
  • [19] R. Rossin, S.M. van den Bosch, W. Ten Hoeve, M. Carvelli, R.M. Versteegen, Bioconj. Chem., 2013, 24, 1210.
  • [20] Q. Li, T. Dong, X. Liu, X. Lei, J. Am. Chem. Soc., 2013, 135, 4996.
  • [21] A. Pałasz, Monatsh. Chem., 2008, 139, 1397.
  • [22] A. Pałasz, Synthesis, 2010, 23, 4021.
  • [23] J. Schoch, M. Wiessler, A. Jäschke. J. Am. Chem. Soc., 2010, 132, 8846.
  • [24] J. Schoch, M. Staudt, A. Samanta, M. Wiessler, A. Jäschke, Bioconj. Chem. 2012, 23, 1382.
  • [25] J. Schoch, S. Ameta, A. Jäschke, Chem. Commun., 2011, 47, 12536.
  • [26] A. M. Pyka, C. Domnick, F. Braun, Bioconj. Chem., 2014, 25, 1438.
  • [27] C. Uttamapinant, J. D. Howe, K. Lang, V. Beránek, L. Davis, M. Mahesh, N. P. Barry, J. Am. Chem. Soc., 2015, 137, 4602.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be7f7287-8ff1-4f8e-81f7-920e459b2c2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.