PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurement of Surface Profile and Surface Roughness of Fibre-Optic Interconnect by Fast Fourier Transform

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study proposes a surface profile and roughness measurement system for a fibre-optic interconnect based on optical interferometry. On the principle of Fizeau interferometer, an interference fringe is formed on the fibre end-face of the fibre-optic interconnect, and the fringe pattern is analysed using the Fast Fourier transform method to reconstruct the surface profile. However, as the obtained surface profile contains some amount of tilt, a rule for estimating this tilt value is developed in this paper. The actual fibre end-face surface profile is obtained by subtracting the estimated tilt amount from the surface profile, as calculated by the Fast Fourier transform method, and the corresponding surface roughness can be determined. The proposed system is characterized by non-contact measurement, and the sample is not coated with a reflector during measurement. According to the experimental results, the difference between the roughness measurement result of an Atomic Force Microscope (AFM) and the measurement result of this system is less than 3 nm.
Rocznik
Strony
381--390
Opis fizyczny
Bibliogr. 21 poz., rys., wykr., wzory
Twórcy
autor
  • Feng Chia University, Department of Automatic Control Engineering, 100 Wenhwa Road, Seatwen, Taichung, Taiwan
autor
  • National Chiao Tung University, College of Electrical and Computer Engineering, 1001 University Road, Hsinchu, Taiwan
autor
  • Feng Chia University, Department of Automatic Control Engineering, 100 Wenhwa Road, Seatwen, Taichung, Taiwan
autor
  • Feng Chia University, Department of Automatic Control Engineering, 100 Wenhwa Road, Seatwen, Taichung, Taiwan
Bibliografia
  • [1] Chow, C.W., Yeh, C.H., Yang, L.G., Sung, J.Y., Huang, S.P. (2012). Design and characterization of largecore optical fiber for Light Peak applications. Opt. Eng., 51(1), 015006.
  • [2] Yajima, Y., Watanabe, H., Kihara, M., Toyonaga, M. (2011). Optical performance of field assembly connectors using incorrectly cleaved fiber ends. Opto-Electronics and Communications Conference (OECC), 617-618.
  • [3] Berdinskikh, T., Bragg, J., Tse, E., Daniel, J., Arrowsmith, P., Fisenko, A., Mahmoud, S. (2002). The contamination of fiber optics connectors and their effect on optical performance. Optical Fiber Communication Conference and Exhibit, 617-619.
  • [4] Garnaes, J., Kofod, N., Kühle, A., Nielsen, C., Dirscherl, K., Blunt, L. (2003). Calibration of step heights and roughness measurements with atomic force microscopes. Precision Engineering, 27(1), 91-98.
  • [5] Poon, C.Y., Bhushan, B. (1995). Comparison of surface roughness measurements by stylus profiler. AFM and non-contact optical profiler. Wear, 190(1), 76-88.
  • [6] Kihara, M., Okada, M., Hosoda, M., Iwata, T., Yajima, Y., Toyonaga, M. (2012). Tool for inspecting faults from incorrectly cleaved fiber ends and contaminated optical fiber connector end surfaces. Optical Fiber Technology, 18(6) 470-479.
  • [7] Lin, C.S., Lin, C.H., Lin, C.C., Yeh, M.S. (2010). Three-dimensional profile measurement of small lens using subpixel localization with color grating. Optik, 121(23), 2122-2127.
  • [8] Lin, C.S., Loh, G.H., Tien, C.L., Lin, T.C., Chiou, Y.C. (2013). Automatic Optical Inspection System for the Micro-lens of Optical Connector with Fuzzy Ratio Analysis. Optik, 124(17), 3085-3090.
  • [9] Lu, J., Chen, J., Xie, J., Wang, F., Tan, Z. (2013). A novel automatic method of fringe counter for equally tilting fringe. Optik, 124(15), 2062-2066.
  • [10] Lin, C.S., Tzeng, G.A., Cheng, C.T., Lay, Y.L., Tien, C.L. (2014). An Automatic Optical Inspection System for the Detection of Three Parallel Lines in Solar Panel End Face. Optik, 125(2), 688-693.
  • [11] Yang, S.W., Lin, S.K. (2014). Automatic Optical Inspection System for 3D Surface Profile Measurement of Multi-Microlenses using Optimal Inspection Path. Measurement Science & Technology, 25(7), 075006.
  • [12] Wang, W.H., Wong, Y.S., Hong, G.S. (2006). 3D measurement of crater wear by phase shifting method. Wear, 261(2), 164-171.
  • [13] Fu, Y., Wang, Z., Yang, J., Wang, J., Jiang, G. (2014). Three-dimensional profile measurement of the blade based on multi-value coding. Optik, 125(11), 2592-2596.
  • [14] Chatterjee, S., Kumar, Y.P., Bhaduri, B. (2007). Measurement of surface figure of plane optical surfaces with polarization phase-shifting Fizeau interferometer. Optics and Laser Technology, 39(2), 268-274.
  • [15] Tien, C.L., Yang, H.M., Liu, M.C. (2009). The measurement of surface roughness of optical thin films based on fast Fourier transform. Thin Solid Films, 517(17), 5110-5115.
  • [16] Hu, E., Zhu, Y. (2013). 3D online measurement of spare parts with variable speed by using line-scan non-contact method. Optik, 124(13), 1472-1476.
  • [17] Tien, C.L., Zeng, H.D. (2010). Measuring residual stress of anisotropic thin film by fast Fourier transform. Optics Express, 18(16), 16594-16600.
  • [18] Park, C.W., Ryu, J.Y. (2008). Development of a new automatic gamma control system for mobile LCD applications. Displays, 29(4), 393-400.
  • [19] Takeda, M., Mutoh, K. (1983). Fourier transform profilometry for the automatic measurement of 3-D object shapes. Applied Optics, 22(24), 3977-3982.
  • [20] Zhao, M., Huang, Q.H., Zhu, L.J., Qiu, Z.M. (2015). Automatic laser interferometer and vision measurement system for stripe rod calibration. Metrol. Meas. Syst., 22(4), 491-502.
  • [21] Macy, W.W. (1983). Two-dimensional fringe-pattern analysis. Applied Optics, 22(23), 3898-3901.
Uwagi
EN
This research project was supported by the Ministry of Science and Technology, under Grant No. MOST 105-2221-E-035-027.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be7ee304-7072-48e2-bfdb-95854837c890
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.