PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metal Mobilisation from Obsolete PCB of Mobile Phones Using Chemolithotrophs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tech is ubiquitous and a major mushrooming stream of hazardous material into the environment produced from the obsolescence of electronic equipment. The successful commercial operations of bioleaching processes from ores are now finding urban mines to be its potential source of base metals and precious metals. Among the six categories of e-waste, mobile phones pose a significant challenge due to technological upgradation and short life span of these gadgets. Thus, this study was precisely projected towards the e-waste generated by mobile phones. The ICP-OES analysis of 0.5 mm particle size of e-waste revealed the presence of base metals Co < Mg < Pb < Zn < Ni < Al < Cu and precious metals Pt < Au. The analysis showed that among base metals Cu is present in the highest concentration i.e., 244.303 g/kg and gold is present in 1106.6 mg/kg. In the current study, the plausibility of bioleaching processes using chemolithotrophs (Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans) for mobilisation of the metals from e-waste was investigated at variable pulp densities (0.5%, 1%, 1.5% and 2%). The results from the study indicated that the pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were able to abundantly leach out base and precious metals at 0.5% and 1% pulp densities of powdered e-waste. At 1% pulp density, Acidithiobacillus ferrooxidans leached 79% of Cu and at 0.5% Ni and Al were leached in 80% and 70% respectively. Acidithiobacillus thiooxidans at 0.5% pulp density leached out Co, Zn and Pb in 61.7%, 60.9%, and 49.8% respectively. Among precious metals at 1% pulp density Acidithiobacillus ferrooxidans leached out Au in 55% and Acidithiobacillus thiooxidans in 67%. These findings highlight the potential application of biomining for mobilization and extraction of metals from electronic waste.
Słowa kluczowe
Twórcy
  • Department of Biotechnology, Government Institute of Science, Nipat Niranjan nagar Aurangabad, Maharashtra, India
  • Department of Biotechnology, Government Institute of Science, Nipat Niranjan nagar Aurangabad, Maharashtra, India
Bibliografia
  • 1. Ahamad A., Kulkarni J., Vithanage M. 2019. Hydrometallurgical recovery of metals from ewaste. Electronic waste management and treatment technology, 225–246. DOI:10.1016/B978–0-12–816190–6.00010–8.
  • 2. Akcil A., et.al. 2015. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants – A review. Waste Management, 45, 258–271. DOI:10.1016/j.wasman.2015.01.017.
  • 3. Baniasadi M., Vakilchap F., Bahaloo-Horeh N., Mousavi S.M., Farnaud S. 2019. Advances in bioleaching as a sustainable method for metal recovery from e-waste: a review. J Ind Eng. Chem., 76, 75–90. DOI:10.1016/j.jiec.2019.03.047.
  • 4. Bosecker K. 1997. Bioleaching: metal solubilization by microorganisms. FEMS Microbiology Reviews 20, 591–604.
  • 5. Brandl H., Bosshard R., Wegmann M. 2001. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy, 59, 319–326.
  • 6. Debnath B., Chowdhury R., Ghosh S.K. 2018. Sustainability of metal recovery from e-waste, front. Environ. Sci. Eng., 12(6), 2. DOI:10.1007/s11783–018–1044–9.
  • 7. Huang K., Guo J., Xu Z. 2009. Recycling of waste printed circuit boards: a review of current technologies and treatment status in China. J. Hazard. Mater. 164, 399–408. DOI:10.1016/j.jhazmat.2008.08.051.
  • 8. Ilyas S., Anwar M.A., Niazi S.B., Ghauri M.A. 2007. Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy, 88, 180–188.
  • 9. Kumar A., Holuszkoa M., Espinosa D.C. 2017. Ewaste: An overview on generation, collection, legislation and recycling practices. Resources, Conservation and Recycling, 122, 32–42. DOI:10.1016/j.resconrec.2017.01.018.
  • 10. Lu H., Guo J. 2007. Recycle technology for recovering resources and products from waste printed circuit boards. Environ. Sci. Technol., 41, 1995–2000. DOI:10.1021/es0618245.
  • 11. Mahdokht A., Soheila Y. 2020. Advances in bioleaching of copper and nickel from electronic waste using Acidithiobacillus ferrooxidans: evaluating daily pH. Chem. Pap. 74, 2211–2227. DOI:10.1007/s11696–020–01055-y.
  • 12. Natarajan G., Ting Y.P. 2015. Gold bio-recovery from e-waste: An improved strategy through spent medium leaching with pH modification. Chemosphere, 136, 232–238 DOI:10.1016/j.chemosphere.2015.05.046.
  • 13. Priya A., Hait S. 2017. Feasibility of Bioleaching of Selected Metals from Electronic Waste by Acidiphilium acidophilum. Waste Biomass Valor. DOI:10.1007/s12649–017–9833–0.
  • 14. Seattle W.A. 2018. Watchdog Group’s GPS Trackers Find “Certified Fake Recyclers” in Texas, Georgia and Florida Sending E-Waste to Asia. Basel Action Network Press Release. https://www.ban.org/trash-transparency/.
  • 15. Semuels A. 2019 The World Has an E-Waste Problem. TIME. Accessed on June 3rd 2020 https://time.com/5594380/world-electronic-waste-problem/.
  • 16. Solange K., Utimura C., Rosario A., Botelho J., Tenório D. 2017. Bioleaching Process for Metal Recovery from Waste Materials. The Minerals, Metals & Materials Series. DOI:10.1007/978–3-319–52192–3_28.
  • 17. Tenório J., Menetti R.P., Chaves A.P. 1997. Production of non-ferrous metallic concentrates from electronic scrap. (In: EPD Congress. TMS, Warrendale, PA, USA, 1997), 505–509.
  • 18. Tiseo I. 2020. Global E-Waste – Statistics & Facts, Energy and environment. https://www.statista.com/topics/3409/electronic-waste-worldwide/Assessed on November 16, 2020.
  • 19. Vermes H., Tiuc A.E., Purcar M. 2019. Advanced recovery techniques for waste materials from IT and telecommunication equipment printed circuit boards. Sustainability, 12, 74. DOI:10.3390/su12010074.
  • 20. Wang T. 2019. Outlook on global volume of ewaste generated 2018–2050. Statistica. https://www.statista.com/statistics/1067081/generationelectronic-waste-globally-forecast/ Accessed on 5th June 2020.
  • 21. Xiu F.R., Qi Y., Zhang F. 2015. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment. Waste Management. DOI:10.1016/j.wasman.2015.02.020.
  • 22. Zhao F., Wang S. 2019. Bioleaching of Electronic Waste Using Extreme Acidophiles. Electronic Waste Management and Treatment Technology. DOI:10.1016/B978–0-12–816190–6.00007–8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be7b8ec6-33a0-4e06-9ab4-c3965ced526f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.