PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of Ozonation of C.I. Reactive Black 5 through a Kinetic Approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie kinetyki procesu ozonowania Reactive Black 5
Języki publikacji
EN
Abstrakty
EN
C.I. Reactive Black 5 (RB5) is the most commonly used dye in the textile industry. Ozone is a strong oxidan that can decompose many barely degradable pollutants, including dyes. Although there are many literature reports devoted to the treatment of textile wastewater and dye solutions by ozone, the ozonation mechanism and modeling of the kinetics is still not well covered. In this work a kinetic model of the process of RB5 decolourisation by ozone has been proposed and validated on the basis of experimental data. The experiments were carried out in a liquid-liquid system to avoid mass transfer limitation. A model was established for acid reaction medium. The main RB5 reaction was direct oxidation of the dye with molecular ozone. The self-decomposition of ozone in liquid phase was taken into account and described by an empirical equation. The reaction rate constants of RB5 with ozone were estimated from the experimental data in the range of (1.88 ± 0.08) × 104 – (2.53 ± 0.10) × 105 M-1s-1 (invariant with initial dye concentration). An empirical equation k′ 2 = 1.06 × 108(COH−)0.31 was built for the constant to make it dependent on the pH value. A solution of the non-linear inverse problem allowed for identification of the kinetic constants on the basis of the experimental data obtained. The model gave a good match between the prediction and experimental data for pH between 1.88 and 4.0.
PL
Reactive Black 5 (RB5) jest powszechnie stosowanym barwnikiem w przemyśle włókienniczym. Ozon, będący silnym utleniaczem, jest w stanie rozłożyć wiele trudno degradowalnych substancji w tym barwniki. Pomimo, iż oczyszczanie ścieków włókienniczych i roztworów barwników ozonem było tematem wielu pozycji literaturowych, niewiele pośród nich dotyczyło badań nad poznaniem mechanizmu utleniania oraz modelowania kinetyki tego procesu. W niniejszej pracy zaproponowano matematyczny model opisujący kinetykę procesu odbarwiania barwnika RB5 za pomocą ozonu. Walidacji dokonano poprzez porównanie wyników modelowania do danych eksperymentalnych. Eksperymenty prowadzono w układzie homogenicznym ciecz-ciecz, aby uniknąć limitacji transferu masy między fazami układu. Model został opracowany dla procesu przebiegającego w środowisku kwaśnym, gdzie główną reakcją było bezpośrednie utlenianie barwnika cząsteczkowym ozonem z jednoczesnym uwzględnieniem rozkładu ozonu w fazie ciekłej. Model opisano równaniem empirycznym. Wartości stałych szybkości reakcji RB5 z ozonem oszacowane na podstawie danych eksperymentalnych znajdowały się w zakresie od do M-1s-1 i były niezależne od początkowego stężenia substratu. W celu uzależnienia stałych szybkości od wartości pH, wyznaczono zależność empiryczną w postaci. Rozwiązanie nieliniowego problemu odwrotnego pozwoliło na identyfikację stałych kinetycznych na podstawie danych eksperymentalnych. Otrzymano dobrą zgodność pomiędzy wynikami modelowania a danymi doświadczalnymi dla wartości pH w zakresie 1,88-4,0.
Rocznik
Strony
54--60
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • Lodz University of Technology, Faculty of Process & Environmental Engineering, Wolczanska 213, 90-924 Lodz, Poland
  • Textile Company Bilinski, Mickiewicza 29, 95-050 Konstantynow Lodzki, Poland
autor
  • Textile Research Institute, Brzezinska 5/15,92-103 Lodz, Poland
autor
  • Lodz University of Technology, Institute of Mechatronics and Information Systems, Stefanowskiego 18/22, 90-924 Lodz, Poland
autor
  • Lodz University of Technology, Faculty of Process & Environmental Engineering, Wolczanska 213, 90-924 Lodz, Poland
  • Lodz University of Technology, Faculty of Process & Environmental Engineering, Wolczanska 213, 90-924 Lodz, Poland
Bibliografia
  • 1. Hu E, Shang S, Tao X, Jiang S and Chiu K. Regeneration and reuse of highly polluting textile dyeing effluents through catalytic ozonation with carbon aerogel catalysts. Journal of Cleaner Production 2016; 137: 1055-1065.
  • 2. Colindres P, Yee-Madeira H, Reguera E. Removal of Reactive Black 5 from aqueous solution by ozone for water reuse in textile dyeing processes. Desalination 2010; 258: 154-158.
  • 3. Bamperng S, Suwannachart T, Atchariyawut S, Jiraratananon R. Ozonation of dye wastewater by membrane contactor using PVDF and PTFE membranes. Separation and Purification Technology 2010; 72: 186-193.
  • 4. Konsowa AH, Ossman ME, Chen Y, Crittenden J C. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon. Journal of Hazardous Materials 2010; 176: 181-185.
  • 5. Chen TY, Kao CM, Hong A, Lin CE, Liang SH. Application of ozone on the decolorization of reactive dyes — Orange-13 and Blue-19. Desalination 2009; 249: 1238-1242.
  • 6. Hsing HJ, Chiang PC, Changb EE, Chena MY. The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study. Journal of Hazardous Materials 2007; 141: 8-16.
  • 7. Oguz E, Keskinler B. Comparison among O3, PAC adsorption, O3/HCO3-, O3/H2O2 and O3/PAC processes for the removal of Bomaplex Red CR-L dye from aqueous solution. Dyes and Pigments 2007; 74, 329-334.
  • 8. Muthukumar M, Sargunamani D, Selvakumar N. Statistical analysis of the effect of aromatic, azo and sulphonic acid groups on decolouration of acid dye effluents using advanced oxidation processes. Dyes and Pigments 2005; 65: 151-158.
  • 9. Muthukumar M, Selvakumar N. Studies on the effect of inorganic salts on decolouration of acid dye effluents by ozonation. Dyes and Pigments 2004; 62: 221-228.
  • 10. Zhang F, Yediler A, Liang X, Kettrup A. Effects of dye additives on the ozonation process and oxidation by-products: a comparative study using hydrolyzed C.I. Reactive Red 120. Dyes and Pigments 2004; 60: 1-7.
  • 11. Wang C, Yediler A, Lienert D, Wang Z, Kettrup A. Ozonation of an azo dye C.I. Remazol Black 5 and toxicological assessment of its oxidation products. Chemosphere 2003; 52: 1225-1232.
  • 12. Arslan Alaton I, Akmehmet Balcioglu I, Bahnemann DW. Advanced oxidation of a reactive dyebath effluent:comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Research 2002; 36: 1143-1154.
  • 13. Arslan I, Balcioglu IA, Tuhkanen T. Advanced oxidation of synthetic dyehouse effluent by O3, H2O2/O3 and H2O2/UV processes. Environmental Technology 1999; 20 (9): 921-931.
  • 14. Chung J, Kim JO. Application of advanced oxidation processes to remove refractory compounds from dye wastewater. Desalination and Water Treatment 2011; 25: 233-240.
  • 15. Somensi CA, Simionatto EL, Bertoli SL, Wisniewski Jr. A, Radetski CM. Use of ozone in a pilot-scale plant for textile wastewater pre-treatment: Physico-chemical efficiency, degradation by-products identification and environmental toxicity of treated wastewater. Journal of Hazardous Materials 2010; 175: 235-240.
  • 16. Senthilkumar M, Muthukumar M. Studies on the possibility of recycling reactive dye bath effluent after decolouration using ozone. Dyes and Pigments 2007; 72: 251-255.
  • 17. Eremektar G, Selcuk H, Meric S. Investigation of the relation between COD fractions and the toxicity in a textile finishing industry wastewater: Effect of preozonation. Desalination 2007; 211: 314-320.
  • 18. Azbar N, Yonar T, Kestioglu K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 2004; 55: 35-43.
  • 19. Baban A, Yediler A, Lienert D, Kemerdere N, Kettrup A. Ozonation of high strength segregated effluents from a woollen textile dyeing and finishing plant. Dyes and Pigments 2003; 58: 93-98.
  • 20. Ciardelli G, Ranieri N. The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation. Water Research 2001; 35 (2): 567-572.
  • 21. Ledakowicz S, Solecka M, Żyłła R. Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. Journal of Biotechnology 2001; 89: 175-184.
  • 22. Ledakowicz S, Gonera M. Optimisation of oxidants dose for combined chemical and biological treatment of textile wastewater. Water Research 1999; 33 (11): 2511-2516.
  • 23. Gomes AC, Fernandes LR, Simões RMS. Oxidation rates of two textile dyes by ozone: Effect of pH and competitive kinetics. Chemical Engineering Journal 2012; 189-190: 175-181.
  • 24. Gomes AC, Nunes JC, Simões RMS. Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system. Journal of Hazardous Materials 2010; 178: 57-65.
  • 25. Lopez-Lopez A, Pic JS, Debellefontaine H. Ozonation of azo dye in a semi-batch reactor: A determination of the molecular and radical contributions. Chemosphere 2007; 66: 2120-2126.
  • 26. Al jibouri AKH, Wu J, Upreti SR. Continuous ozonation of methylene blue in water. Journal of Water Process Engineering 2015; 8: 142-150.
  • 27. Panda KK, Mathews AP. Ozone oxidation kinetics of Reactive Blue 19 anthraquinone dye in a tubular in situ ozone generator and reactor: Modeling and sensitivity analyses. Chemical Engineering Journal 2014; 255: 553-567.
  • 28. Tizaoui C, Grima N. Kinetics of the ozone oxidation of Reactive Orange 16 azo-dye in aqueous solution. Chemical Engineering Journal 2011; 173: 463-473.
  • 29. Zhao W, Liu F, Yang Y, Tan M and Zhao D. Ozonation of Cationic Red X-GRL in aqueous solution: Kinetics and modeling. Journal of Hazardous Materials 2011; 187: 526-533.
  • 30. Torregrosa JI, Navarro-Laboulais J, Lopez F, Cardona SC, Abad A, Capablanca L. Study of the Ozonation of a Dye Using Kinetic Information Reconstruction. Ozone: Science & Engineering 2008; 30(5): 344-355.
  • 31. Olak-Kucharczyk M, Ledakowicz S. How to avoid mass transfer limitations in ozonation kinetics of phenylphenol isomers? Chemical and Process Engineering 2016; 37 (1): 5-13.
  • 32. Glaze WH, Kang JW. and Chapin DH. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Science & Engineering 1987; 9: 335-352.
  • 33. Beltran FJ. Ozone reaction kinetics for water and wastewater systems. United States: Lewis Publishers, 2004, pp. 14-17, ISBN 0-203-59154-2.
  • 34. Lovato ME, Martín CA, Cassano AE. A reaction kinetic model for ozone decomposition in aqueous media valid for neutral and acidic pH. Chemical Engineering Journal 2009; 146: 486-497.
  • 35. Qiu, Y. Kinetic, and Mass Transfer of the Reaction Between Dichlorophenols and Ozone in Liquid–Liquid and Gas–Liquid System. PhD Thesis. Mississippi State University, United States. 1999.
  • 36. Chu Wand Ching MH. Modeling the ozonation of 2,4-dichlorophoxyacetic acid through a kinetic approach. Water Research 2003; 37: 39-46.
  • 37. Kusvuran E, Gulnaz O, Samil A, Erbil M. Detection of double bond-ozone stoichiometry by an iodimetric method during ozonation processes. Journal of Hazardous Materials 2010; 175: 410-416.
  • 38. Bilińska L, Gmurek M, Ledakowicz S. Textile wastewater treatment by AOPs for brine reuse. Process Safety and Environmental Protection 2017; Accepted, DOI: 10.1016/j.psep.2017.04.019
  • 39. Turhan K, Durukan I, Ozturkcan SA, Turgut Z. Decolorization of textile basic dye in aqueous solution by ozone. Dyes and Pigments 2012; 92: 897-901.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be786807-fe61-4841-9799-752f9a3237c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.