PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A New Approach in Coal Mine Exploration Using Cosmic Ray Muons

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Muon radiography is a technique that uses cosmic ray muons to image the interior of large scale geological structures. The muon absorption in matter is the most important parameter in cosmic ray muon radiography. Cosmic ray muon radiography is similar to X-ray radiography. The main aim in this survey is the simulation of the muon radiography for exploration of mines. So, the production source, tracking, and detection of cosmic ray muons were simulated by MCNPX code. For this purpose, the input data of the source card in MCNPX code were extracted from the muon energy spectrum at sea level. In addition, the other input data such as average density and thickness of layers that were used in this code are the measured data from Pabdana (Kerman, Iran) coal mines. The average thickness and density of these layers in the coal mines are from 2 to 4 m and 1.3 gr/cm3 , respectively. To increase the spatial resolution, a detector was placed inside the mountain. The results indicated that using this approach, the layers with minimum thickness about 2.5 m can be identified.
Słowa kluczowe
Czasopismo
Rocznik
Strony
1034--1050
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Department of Physics, Payame Noor University, Tehran, Iran
  • Department of Physics, Kerman Graduate University of Technology, Kerman, Iran
autor
  • Department of Physics, Kerman Graduate University of Technology, Kerman, Iran
autor
  • Department of Physics, Shahid Bahonar University, Kerman, Iran
autor
  • Department of Physics, Payame Noor University, Tehran, Iran
Bibliografia
  • Allkofer, O.C., K. Carstensen, G. Bella, W.D. Dau, H. Jokisch, G. Klemke, Y. Oren, and R.C. Uhr (1981), Muon spectra from DEIS up to 7 TeV. In: Proc. 17th Int. Cosmic Ray Conference, 13-25 July 1981, Paris, France, Vol. 10, 321- 324.
  • Alvarez, L.W., J.A. Anderson, F. El Bedwei, J. Burkhard, A. Fakhry, A. Girgis, A. Goneid, F. Hassan, D. Iverson, G. Lynch, Z. Miligy, A.H. Moussa, M. Sharkawi, and L. Yazolino (1970), Search for hidden chambers in the pyramids, Science 167, 3919, 832-839, DOI: 10.1126/science.167.3919. 832.
  • Bektasoglu, M., H. Arslan, and D. Stanca (2012), Simulations of muon flux in slanic salt mine, Adv. High Energy Phys. 2012, 751762, DOI: 10.1155/2012/ 751762.
  • Bugaev, E.V., Y.D. Kotov, and I.L. Rosental (1970), Cosmic Muons and Neutrinos, Atomizdat, Moscow, 320 pp.
  • Darijani, R., A. Negarestani, M.R. Rezaie, J. Fatami, and A. Akhond (2014), Formulation of muon range 0-100 TeV and transmission through lead, Indian J. Pure Appl. Phys. 52, 1, 7-12.
  • Gaisser, T.K. (1990), Cosmic Rays and Particle Physics, Cambridge University Press, Cambridge.
  • Lesparre, N., D. Gibert, J. Marteau, Y. Déclais, D. Carbone, and E. Galichet (2010), Geophysical muon imaging: feasibility and limits, Geophys. J. Int. 183, 3, 1348-1361, DOI: 10.1111/j.1365-246X.2010.04790.x.
  • Malmqvist, L., G. Jönsson, K. Kristiansson, and L. Jacobsson (1979), Theoretical studies of in-situ rock density determinations using underground cosmicray muon intensity measurements with application in mining geophysics, Geophysics 44, 9, 1549-1569, DOI: 10.1190/1.1441026.
  • Nagamine, K. (2003), Introductory Muon Science, Cambridge University Press, Cambridge.
  • Nagamine, K., M. Iwasaki, K. Shimomura, and K. Ishida (1995), Method of probing inner-structure of geophysical substance with the horizontal cosmic-ray muons and possible application to volcanic eruption prediction, Nucl. Instrum. Meth. Phys. Res. A 356, 2-3, 585-595, DOI: 10.1016/0168- 9002(94) 01169-9.
  • Pelowitz, D.B. (ed.) (2008), MCNPX user’s manual, version 2.6.0, LA-CP-07-1743, Los Alamos National Laboratory, Los Alamos, USA.
  • Tajik, M., N. Ghal-Eh, G.R. Etaati, and H. Afarideh (2013), Modeling NE213 scintillator response to neutrons using an MCNPX-PHOTRACK hybrid code, Nucl. Instrum. Meth. Phys. Res. A 704, 104-110, DOI: 10.1016/j.nima. 2012.12.001.
  • Tanaka, H., K. Nagamine, N. Kawamura, S.N. Nakamura, K. Ishida, and K. Shimomura (2003), Development of a two-fold segmented detection system for near horizontally cosmic-ray muons to probe the internal structure of a volcano, Nucl. Instrum. Meth. Phys. Res. A 507, 3, 657-669, DOI: 10.1016/ S0168-9002(03)01372-X.
  • Tanaka, H.K.M., T. Nakano, S. Takahashi, J. Yoshida, and K. Niwa (2007), Development of an emulsion imaging system for cosmic-ray muon radiography to explore the internal structure of volcano, Mt. Asama, Nucl. Instrum. Meth. Phys. Res. A 575, 3, 489-497, DOI: 10.1016/j.nima.2007.02.104.
  • Thompson, M.G., and M.R. Whalley (1975), The production spectra of the parents of vertical cosmic ray muons, J. Phys. G 1, 48-50, DOI: 10.1088/0305- 4616/1/6/004.
  • Zareie, S.H. (2010), A Monte Carlo simulation of the Compton camera, M.Sc. Thesis, San Diego State University, San Diego, USA.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be6d5e45-635a-4542-b284-1cb9ca622273
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.