PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spectral analysis for tilted fiber Bragg gratings in the corrosion detection for concrete structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An effective corrosion monitoring technique is sought after by the engineers for assessing the steel bar corrosion at the early stage for the maintenance and repair works, especially in the corrosive environments, such as coastal and marine. In this work, tilted fiber Bragg grating (TFBG) with the optical sensor is employed in corrosion monitoring of a reinforced concrete structure. Taking advantage of the high sensitivity of TFBG cladding resonance wavelengths to the change in the surrounding medium, the sensor is mounted on the steel bar that is embedded in a concreted block during an accelerated corrosion process. The acquired transmission spectrum of the TFBG during the procedure is digitally processed using Fourier Transform to produce an index that is sensitive to the generated corrosion product surrounding the TFBG sensor. This eases the analysis of the sophisticated TFBG transmission spectra. The generated index can be used as an indicator (indicator J ) for the corrosion process of the embedded steel bar in the concrete structure. This indicator J can act as an indicator to describe the corrosion activity and corrosion level at a specific point of the steel bar in concrete structures.
Czasopismo
Rocznik
Strony
429--439
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Civil Engineer Department, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, Cheras 43000, Kajang, Selangor, Malaysia
autor
  • Photonics Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
autor
  • Photonics Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
autor
  • Civil Engineer Department, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, Cheras 43000, Kajang, Selangor, Malaysia
  • Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
  • Photonics Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
autor
  • Photonics Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
Bibliografia
  • [1] SØRENSEN H.E., FRØLUND T., Monitoring of reinforcement corrosion in marine concrete structures by the galvanostatic pulse method, [In] Proceedings of International Conference on Concrete in Marine Environments, Hanoi-Vietnam, 2002.
  • [2] ASTM C876-91 R99. Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing-Steel in Concrete. West Conshohocken, PA: ASTM, 2005.
  • [3] AGUIRRE-GUERRERO A.M., ROBAYO-SALAZAR R.A., DE GUTIÉRREZ R.M., A novel geopolymer application: Coatings to protect reinforced concrete against corrosion, Applied Clay Science 135, 2017, pp. 437–446, DOI: 10.1016/j.clay.2016.10.029.
  • [4] SUBBIAH K., VELU S., KWON S.J., LEE H.S., RETHINAM N., PARK D.J., A novel in-situ corrosion monitoring electrode for reinforced concrete structures, Electrochimica Acta 259, 2018, pp. 1129–1144, DOI: 10.1016/j.electacta.2017.10.088.
  • [5] WANG F., XU J., XU Y., JIANG L., MA G., A comparative investigation on cathodic protections of three sacrificial anodes on chloride-contaminated reinforced concrete, Construction and Building Materials 246, 2020, 118476, DOI: 10.1016/j.conbuildmat.2020.118476.
  • [6] WU Z., YU H., MA H., ZHANG J., DA B., ZHU H., Rebar corrosion in coral aggregate concrete: Determination of chloride threshold by LPR, Corrosion Science 163, 2020, 108238, DOI: 10.1016/j.corsci.2019.108238.
  • [7] OUELLETTE S.A., TODD M.D., Cement seawater battery energy harvester for marine infrastructure monitoring, IEEE Sensors Journal 14(3), 2014, pp. 865–872, DOI: 10.1109/JSEN.2013.2290492.
  • [8] WU Z., YU H., MA H., DA B., TAN Y., Rebar corrosion behavior of coral aggregate seawater concrete by electrochemical techniques, Anti-Corrosion Methods and Materials 67(1), 2020, pp. 59–72, DOI: 10.1108/ACMM-05-2019-2128.
  • [9] LIU P., HU Y., GENG B., XU D., Corrosion monitoring of the reinforced concrete by using the embedded annular piezoelectric transducer, Journal of Materials Research and Technology 9(3), 2020, pp. 3511–3519, DOI: 10.1016/j.jmrt.2020.01.088.
  • [10] RAMÓN J.E., MARTÍNEZ I., GANDÍA-ROMERO J.M., SOTO J., An embedded-sensor approach for concrete resistivity measurement in on-site corrosion monitoring: Cell constants determination, Sensors 21(7), 2021, 2481, DOI: 10.3390/s21072481.
  • [11] SING D.V., SACHA A.K., RAWA A., Developments in corrosion detection techniques for reinforced concrete structures, Indian Journal of Science and Technology 9(30), 2016, pp. 1–6, DOI: 10.17485/ijst/2016/v9i30/99205.
  • [12] BREMER K., WEIGAND F., ZHENG Y., ALWIS L.S., HELBIG R., ROTH B., Structural health monitoring using textile reinforcement structures with integrated optical fiber sensors, Sensors 17(2), 2017, 345, DOI: 10.3390/s17020345.
  • [13] MAO J., CHEN J., CUI L., JIN W., XU C., HE Y., Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors, Sensors 15(4), 2015, pp. 8866–8883, DOI: 10.3390/s150408866.
  • [14] ROSSI P., LE MAOU F., New method for detecting cracks in concrete using fibre optics, Materials and Structures 22(6), 1989, pp. 437–442, DOI: 10.1007/BF02472221.
  • [15] DAVIS M.A., BELLEMORE D.G., KERSEY A.D., Distributed fiber Bragg grating strain sensing in reinforced concrete structural components, Cement and Concrete Composites 19(1), 1997, pp. 45–57, DOI: 10.1016/S0958-9465(96)00042-X.
  • [16] MAASKANT R., ALAVIE T., MEASURES R.M., TADROS G., RIZKALLA S.H., GUHA-THAKURTA A., Fiber-optic Bragg grating sensors for bridge monitoring, Cement and Concrete Composites 19(1), 1997, pp. 21–33, DOI: 10.1016/S0958-9465(96)00040-6.
  • [17] PNG W.H., LIN H.S., PUA C.H., LIM J.H., LIM S.K., LEE Y.L., RAHMAN F.A., Feasibility use of in-line Mach–Zehnder interferometer optical fibre sensor in lightweight foamed concrete structural beam on curvature sensing and crack monitoring, Structural Health Monitoring 17(5), 2018, pp. 1277–1288, DOI: 10.1177/1475921718792108.
  • [18] WEI H., LIAO K., ZHAO X., KONG X., ZHANG P., SUN C., Low-coherent fiber-optic interferometry for in situ monitoring the corrosion-induced expansion of pre-stressed concrete cylinder pipes, Structural Health Monitoring 18(5–6), 2019, pp. 1862–1873, DOI: 10.1177/1475921719826360.
  • [19] DENG F., HUANG Y., AZARMI F., Corrosion detection for steel with soft coating using in-line fiber Bragg grating sensor, Proc. SPIE 10168, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, 101681R, DOI: 10.1117/12.2260260.
  • [20] BONFIGLIOLI B., PASCALE G., Internal strain measurements in concrete elements by fiber optic sensors, Journal of Materials in Civil Engineering 15(2), 2003, pp. 125–133, DOI: 10.1061/(ASCE)0899-1561(2003)15:2(125).
  • [21] KUANG K.S.C., AKMALUDDIN, CANTWELL W.J., THOMAS C., Crack detection and vertical deflection monitoring in concrete beams using plastic optical fibre sensors, Measurement Science and Technology 14(2), 2003, pp. 205–216, DOI: 10.1088/0957-0233/14/2/308.
  • [22] MAO J., XU F., GAO Q., LIU S., JIN W., XU Y., A monitoring method based on FBG for concrete corrosion cracking, Sensors 16(7), 2016, 1093, DOI: 10.3390/s16071093.
  • [23] ALMUBAIED O., CHAI H.K., ISLAM M.R., LIM K.S., TAN C.G., Monitoring corrosion process of reinforced concrete structure using FBG strain sensor, IEEE Transactions on Instrumentation and Measurement 66(8), 2017, pp. 2148–2155, DOI: 10.1109/TIM.2017.2676218.
  • [24] COOPER K.R., ELSTER J., JONES M., KELLY R.G., Optical fiber-based corrosion sensor systems for health monitoring of aging aircraft, [In] 2001 IEEE Autotestcon Proceedings. IEEE Systems Readiness Technology Conference. (Cat. No. 01CH37237), 2001, pp. 847–856, DOI: 10.1109/AUTEST.2001.949466.
  • [25] DONG S., LIAO Y., TIAN Q., Sensing of corrosion on aluminum surfaces by use of metallic optical fiber, Applied Optics 44(30), 2005, pp. 6334–6337, DOI: 10.1364/AO.44.006334.
  • [26] DONG S., PENG G., LUO Y., Preparation techniques of metal clad fibres for corrosion monitoring of steel materials, Smart Materials and Structures 16(3), 2007, pp. 733–738, DOI: 10.1088/0964-1726/16/3/021.
  • [27] MCADAM G., NEWMAN P.J., MCKENZIE I., DAVIS C., HINTON B.R.W., Fiber optic sensors for detection of corrosion within aircraft, Structural Health Monitoring 4(1), 2005, pp. 47–56, DOI: 10.1177/1475921705049745.
  • [28] YANG D., DU L., XU Z., JIANG Y., XU J., WANG M., BAI Y., WANG H., Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid, Applied Physics Letters 104(6), 2014, 061903, DOI: 10.1063/1.4864649.
  • [29] GUO T., IVANOV A., CHEN C., ALBERT J., Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling, Optics Letters 33(9), 2008, pp. 1004–1006, DOI: 10.1364/OL.33.001004.
  • [30] SHEN C., ZHANG Y., ZHOU W., ALBERT J., Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance, Applied Physics Letters 104(7), 2014, 071106, DOI: 10.1063/1.4865932.
  • [31] CHEN C., CAUCHETEUR C., MÉGRET P., ALBERT J., The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses, Measurement Science and Technology 18(10), 2007, pp. 3117–3122, DOI: 10.1088/0957-0233/18/10/S11.
  • [32] MELO L.B., RODRIGUES J.M.M., FARINHA A.S.F., MARQUES C.A., BILRO L., ALBERTO N., TOMÈ J.P.C., NOGUEIRA R.N., Concentration sensor based on a tilted fiber Bragg grating for anions monitoring, Optical Fiber Technology 20(4), 2014, pp. 422–427, DOI: 10.1016/j.yofte.2014.05.002.
  • [33] ERDOGAN T., SIPE J.E., Tilted fiber phase gratings, Journal of the Optical Society of America A 13(2), 1996, pp. 296–313, DOI: 10.1364/JOSAA.13.000296.
  • [34] CAUCHETEUR C., BETTE S., CHEN C., WUILPART M., MEGRET P., ALBERT J., Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement, IEEE Photonics Technology Letters 20(24), 2008, pp. 2153–2155, DOI: 10.1109/LPT.2008.2007745.
  • [35] JIANG B., HAO Z., FENG D., ZHOU K., ZHANG L., ZHAO J., Hybrid grating in reduced-diameter fiber for temperature-calibrated high-sensitivity refractive index sensing, Applied Sciences 9(9), 2019, 1923, DOI: 10.3390/app9091923.
  • [36] LI T., DONG X., CHAN C.C., ZHAO C.L., JIN S., Power-referenced optical fiber refractometer based on a hybrid fiber grating, IEEE Photonics Technology Letters 23(22), 2011, pp. 1706–1708, DOI: 10.1109/LPT.2011.2167607.
  • [37] MAGUIS S., LAFFONT G., FERDINAND P., CARBONNIER B., KHAM K., MEKHALIF T., MILLOT M.C., Biofunctionalized tilted Fiber Bragg Gratings for label-free immunosensing, Optics Express 16(23), 2008, pp. 19049–19062, DOI: 10.1364/OE.16.019049.
  • [38] IJSSELING F.P., Application of electrochemical methods of corrosion rate determination to systems involving corrosion product layers: Part 1: Linear polarization resistance measurement as an example of a simple method that can be performed with commercially available instruments, British Corrosion Journal 21(2), 1986, pp. 95–101, DOI: 10.1179/000705986798272316.
  • [39] ISLAM M.R., BAGHERIFAEZ M., ALI M.M., CHAI H.K., LIM K.S., AHMAD H., Tilted fiber Bragg grating sensors for reinforcement corrosion measurement in marine concrete structure, IEEE Transactions on Instrumentation and Measurement 64(12), 2015, pp. 3510–3516, DOI: 10.1109/TIM.2015.2459511.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be6d10ac-0697-494e-ae20-670db31a4219
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.