Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The prevalence of dementia is expected to increment in the next decades as the elderly population grows and ages. Hence, Alzheimer’s Disease (AD), as the most frequent dementia, will be more problematic from a socioeconomic point of view. Different diagnostic criteria have been proposed by clinicians for the early diagnosis of AD. After discarding the longitudinal and prognosis articles, a selection of articles from the last decade and based on Artificial Neural Networks (ANNs) was collated from the PubMed database, and complemented with researches extracted from others. The latest trends on this field were discovered in these selected articles, which were later discussed. Only articles based whether on shallow ANNs, Deep Learning (DL) or a mix of both were included. The total number of cross-sectional articles that complied with our selection criteria was 154. Convolutional Neural Networks (CNNs) combined with neuroimaging has been the most popular approach, yielding very good performance results. Approaches based on non-neuroimaging techniques, such as gait, genetics, speech and neuropsychological tests, were less common but have their own advantages. Multimodality solutions may become even more prevalent in the near future. Similarly, novel diagnostic criteria will appear and the popularity of currently not-so-common ones will expand. A new proposal emerged from these trends, which is based on ontogenetic ANNs.
Rocznik
Tom
Strony
277--283
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
autor
- Instituto Universitario de Cibernética, Empresa y Sociedad, Universidad de Las Palmas de Gran Canaria, Parque Científico Tecnológico, Campus Universitario de Tafira, Las Palmas de Gran Canaria, CN, Spain
autor
- Instituto Universitario de Cibernética, Empresa y Sociedad, Universidad de Las Palmas de Gran Canaria, Parque Científico Tecnológico, Campus Universitario de Tafira, Las Palmas de Gran Canaria, CN, Spain
autor
- Instituto Universitario de Cibernética, Empresa y Sociedad, Universidad de Las Palmas de Gran Canaria, Parque Científico Tecnológico, Campus Universitario de Tafira, Las Palmas de Gran Canaria, CN, Spain
autor
- Departamento de Ingeniería Informática y de Sistemas, Universidad de La Laguna, Escuela Superior de Ingeniería y Tecnología, San Cristóbal de La Laguna, CN, Spain
Bibliografia
- [1] R. C. Petersen, B. Caracciolo, C. Brayne, S. Gauthier, V. Jelic, and L. Fratiglioni, “Mild cognitive impairment: A concept in evolution,” Journal of internal medicine, vol. 275, no. 3, pp. 214-228, Mar. 2014. doi: 10.1111/joim.12190.
- [2] C. P. Suárez-Araujo, Y. Cabrera-León, P. Fernández-López, and P. G. Báez, “Neural Computation Methods for the Early Diagnosis and Prognosis of Alzheimer’s Disease: An Overview (Invited Lecture),” in Dependable Computer Systems and Networks: Proceedings of the Eighteenth International Conference on Dependability of Computer Systems DepCoS-RELCOMEX, ser. Lecture Notes in Networks and Systems, vol. 737. Brunów, Poland: Springer Nature, Sep. 2023, pp. 359-362.
- [3] S. Lahmiri and A. Shmuel, “Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer’s disease,” Biomedical Signal Processing and Control, vol. 52, pp. 414-419, Jul. 2019. doi: 10.1016/j.bspc.2018.08.009.
- [4] A. J. C. C. Lins, M. T. C. Muniz, and C. J. A. Bastos-Filho, “Comparing Machine Learning Techniques for Dementia Diagnosis,” in 2018 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Nov. 2018. doi: 10.1109/LA-CCI.2018.8625209 pp. 1-6.
- [5] E. Pellegrini, L. Ballerini, M. D. C. V. Hernandez, F. M. Chappell, V. González-Castro, D. Anblagan, S. Danso, S. Muñoz-Maniega, D. Job, C. Pernet, G. Mair, T. J. MacGillivray, E. Trucco, and J. M. Wardlaw, “Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review,” Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, vol. 10, pp. 519-535, Jan. 2018. doi: 10.1016/j.dadm.2018.07.004.
- [6] A. K. Akobeng, “Understanding diagnostic tests 1: Sensitivity, specificity and predictive values,” Acta Paediatrica, vol. 96, no. 3, pp. 338-341, Mar. 2007. doi: 10.1111/j.1651-2227.2006.00180.x.
- [7] Y. Cabrera León, “Análisis del Uso de las Redes Neuronales Artificiales en el Diseño de Filtros Antispam: una Propuesta Basada en Arquitecturas Neuronales No Supervisadas,” Final Project, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Dec. 2015.
- [8] T. Fawcett, “ROC graphs: Notes and practical considerations for researchers,” Machine Learning, vol. 31, no. 1, pp. 1-38, Mar. 2004.
- [9] J. A. Swets, “Measuring the Accuracy of Diagnostic Systems,” Science, vol. 240, no. 4857, pp. 1285-1293, Jun. 1988.
- [10] N. Sabbaghi, A. Sheikhani, M. Noroozian, and N. Sabbaghi, “Intervalbased features of auditory ERPs for diagnosis of early Alzheimer’s disease,” Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, vol. 13, no. 1, Jan. 2021. doi: 10.1002/dad2.12191.
- [11] J. Lu, W. Zeng, L. Zhang, and Y. Shi, “A Novel Key Features Screening Method Based on Extreme Learning Machine for Alzheimer’s Disease Study,” Frontiers in Aging Neuroscience, vol. 14, 2022. doi: 10.3389/fnagi.2022.888575.
- [12] A. H. Rashid, A. Gupta, J. Gupta, and M. Tanveer, “Biceph-Net: A robust and lightweight framework for the diagnosis of Alzheimer’s disease using 2D-MRI scans and deep similarity learning,” IEEE Journal of Biomedical and Health Informatics, pp. 1-1, 2022. doi: 10.1109/JBHI.2022.3174033.
- [13] X. Wu, S. Gao, J. Sun, Y. Zhang, and S. Wang, “Classification of Alzheimer’s Disease Based on Weakly Supervised Learning and Attention Mechanism,” Brain Sciences, vol. 12, no. 12, p. 1601, Nov. 2022. doi: 10.3390/brainsci12121601.
- [14] J. Sheng, B. Wang, Q. Zhang, and M. Yu, “Connectivity and variability of related cognitive subregions lead to different stages of progression toward Alzheimer’s disease,” Heliyon, vol. 8, no. 1, p. e08827, Jan. 2022. doi: 10.1016/j.heliyon.2022.e08827.
- [15] X. Sun, W. Guo, and J. Shen, “Toward attention-based learning to predict the risk of brain degeneration with multimodal medical data,” Frontiers in Neuroscience, vol. 16, 2023.
- [16] M. Jiang, B. Yan, Y. Li, J. Zhang, T. Li, and W. Ke, “Image Classification of Alzheimer’s Disease Based on External-Attention Mechanism and Fully Convolutional Network,” Brain Sciences, vol. 12, no. 3, p. 319, Feb. 2022. doi: 10.3390/brainsci12030319.
- [17] J. X. Wang, Y. Li, X. Li, and Z.-H. Lu, “Alzheimer’s Disease Classification Through Imaging Genetic Data With IGnet,” Frontiers in Neuro-science, vol. 16, p. 846638, Mar. 2022. doi: 10.3389/fnins.2022.846638.
- [18] Y. Zhao, J. Zhang, Y. Chen, and J. Jiang, “A Novel Deep Learning Radiomics Model to Discriminate AD, MCI and NC: An Exploratory Study Based on Tau PET Scans from ADNI,” Brain Sciences, vol. 12, no. 8, p. 1067, Aug. 2022. doi: 10.3390/brainsci12081067.
- [19] H. Bhasin, R. K. Agrawal, and f. A. D. N. Initiative, “Triploid genetic algorithm for convolutional neural network-based diagnosis of mild cognitive impairment,” Alzheimer’s & Dementia, vol. n/a, no. n/a, Feb. 2022. doi: 10.1002/alz.12565.
- [20] M. Ashtari-Majlan, A. Seifi, and M. M. Dehshibi, “A multi-stream convolutional neural network for classification of progressive MCI in Alzheimer’s disease using structural MRI images,” IEEE Journal of Biomedical and Health Informatics, pp. 1-1, 2022. doi: 10.1109/JBHI.2022.3155705.
- [21] J. Tang, L. Wu, H. Huang, J. Feng, Y. Yuan, Y. Zhou, P. Huang, Y. Xu, and C. Yu, “Back propagation artificial neural network for community Alzheimer’s disease screening in China,” Neural Regeneration Research, vol. 8, no. 3, pp. 270-276, Jan. 2013. doi: 10.3969/j.issn.1673-5374.2013.03.010.
- [22] Y. Ma, H. Hao, J. Xie, H. Fu, J. Zhang, J. Yang, Z. Wang, J. Liu, Y. Zheng, and Y. Zhao, “ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model,” IEEE Transactions on Medical Imaging, vol. 40, no. 3, pp. 928-939, Mar. 2021. doi: 10.1109/TMI.2020.3042802.
- [23] N. Mahendran, P. M. D. R. Vincent, K. Srinivasan, and C.-Y. Chang, “Improving the Classification of Alzheimer’s Disease Using Hybrid Gene Selection Pipeline and Deep Learning,” Frontiers in Genetics, vol. 12, p. 784814, Nov. 2021. doi: 10.3389/fgene.2021.784814.
- [24] A. Sosa-Marrero, Y. Cabrera-León, P. Fernández-López, P. García-Báez, J. L. Navarro-Mesa, and C. P. Suárez-Araujo, “Detection of Alzheimer’s Disease Versus Mild Cognitive Impairment Using a New Modular Hybrid Neural Network,” in Advances in Computational Intelligence, ser. Lecture Notes in Computer Science, I. Rojas, G. Joya, and A. Catala, Eds. Cham: Springer International Publishing, Aug. 2021. doi: 10.1007/978-3-030-85099-9 18 pp. 223-235.
- [25] C. P. Suárez-Araujo, P. García Báez, Y. Cabrera-León, A. Prochazka, N. Rodríguez Espinosa, C. Fernández Viadero, and f. t. A. D. Neuroimaging Initiative, “A Real-Time Clinical Decision Support System, for Mild Cognitive Impairment Detection, Based on a Hybrid Neural Architecture,” Computational and Mathematical Methods in Medicine, vol. 2021, p. e5545297, Jun. 2021. doi: 10.1155/2021/5545297.
- [26] W.-T. Cheah, J.-J. Hwang, S.-Y. Hong, L.-C. Fu, Y.-L. Chang, T.-F. Chen, I.-A. Chen, and C.-C. Chou, “A Digital Screening System for Alzheimer Disease Based on a Neuropsychological Test and a Convolutional Neural Network: System Development and Validation,” JMIR Medical Informatics, vol. 10, no. 3, p. e31106, Mar. 2022. doi: 10.2196/31106.
- [27] L. Chiricosta, S. D’Angiolini, A. Gugliandolo, and E. Mazzon, “Artificial Intelligence Predictor for Alzheimer’s Disease Trained on Blood Transcriptome: The Role of Oxidative Stress,” International Journal of Molecular Sciences, vol. 23, no. 9, p. 5237, May 2022. doi: 10.3390/ijms23095237.
- [28] L. Ilias and D. Askounis, “Multimodal Deep Learning Models for Detecting Dementia From Speech and Transcripts,” Frontiers in Aging Neuroscience, vol. 14, p. 830943, Mar. 2022. doi: 10.3389/fnagi.2022.830943.
- [29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You Need,” Dec. 2017.
- [30] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997. doi: 10.1162/neco.1997.9.8.1735.
- [31] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation,” arXiv:1406.1078 [cs, stat], Jun. 2014.
- [32] E. Fiesler and R. Beale, Eds., Handbook of Neural Computation, ser. Computational Intelligence Library. Taylor & Francis, 1997.
- [33] E. Sanchez, D. Mange, M. Sipper, M. Tomassini, A. Perez-Uribe, and A. Stauffer, “Phylogeny, ontogeny, and epigenesis: Three sources of biological inspiration for softening hardware,” in Evolvable Systems: From Biology to Hardware, ser. Lecture Notes in Computer Science, T. Higuchi, M. Iwata, and W. Liu, Eds. Berlin, Heidelberg: Springer, 1997. doi: 10.1007/3-540-63173-9 37 pp. 33-54.
- [34] P. G. Báez, “HUMANN: una nueva red neuronal artificial adaptativa, no supervisada, modular y jerárquica. Aplicaciones en neurociencia y medioambiente,” Ph.D. dissertation, Universidad de Las Palmas de Gran Canaria, 2005.
- [35] T. Kohonen, Self-Organizing Maps, 3rd ed. Secaucus, NJ, USA: Springer-Verlag New York, 2001.
- [36] P. G. Báez, C. P. S. Araujo, C. F. Viadero, and A. Procházka, “Differential Diagnosis of Dementia Using HUMANN-S Based Ensembles,” in Recent Advances in Intelligent Engineering Systems, J. Kacprzyk, J. Fodor, R. Klempous, and C. P. Suárez Araujo, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, vol. 378, pp. 305-324.
- [37] B. Fritzke, “A Growing Neural Gas Network Learns Topologies,” Advances in neural information processing systems, pp. 625-632, 1995.
- [38] L. Yu and H. Liu, “Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution,” in Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003), Washington DC, Aug. 2003, pp. 856-863.
- [39] Y. Cabrera-León, P. G. Báez, P. Fernández-López, and C. P. Suárez-Araujo, “Study on Mild Cognitive Impairment and Alzheimer’s Disease Classification using a New Ontogenic Neural Architecture, the Super-vised Reconfigurable Growing Neural Gas,” in 2023 Annual Modeling and Simulation Conference (ANNSIM 2023). Mohawk College, ON, Canada: IEEE, May 2023, pp. 425-436.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be6bcce7-86ec-4c45-bcab-cd3e9bb05dbb