PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of two methods for detection of UV signals emitted by PD on HV insulators made of porcelain

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Porównanie dwóch metod wykrywania sygnałów UV emitowanych PD na porcelanowych izolatorach HV
Języki publikacji
EN
Abstrakty
EN
The paper presents measurements results of optical signals emitted by partial discharges (PD) occurring on various high voltage (HV) insulators made of porcelain. The following devices were considered during the research works: an insulating cylinder, a long rod insulator and a cap insulator. The optical signals were recorded with two different devices: 1) an ultraviolet (UV) camera and 2) a spectrophotometer. The measurements of optical signals were performed under laboratory conditions by changing the supply voltage and the distance between the HV and the ground electrodes. Based on the gathered results it was stated that the maximal number of optical emission counts, which was measured within the UV camera, was different for each of the considered device types. it was also stated that the optical signals registered with the UV camera (250-280 nm) are not the most intense signals contained in the radiation. Application of the spectrophotometer has enabled to show that there are more intense wavelength components which are in the range from 320-380 nm.
PL
Praca przedstawia wyniki pomiarów optycznych sygnałów emitowanych przez wyładowania niezupełne (PD) występujące na różnych porcelanowych izolatorach wysokich napięciach (HV). W trakcie prac badawczych zostały rozpatrzone następujące urządzenia: kamera ultrafioletowa (UV) oraz 2) spektrometr. Pomiary optycznych sygnałów przeprowadzono w warunkach laboratoryjnych, przez zmianę napięcia zasilania i odległości między HV i uziemioną elektrodą. Na podstawie otrzymanych wyników stwierdzono, że maksymalna ilość optycznych emisji które były mierzone za pomocą UV kamery była różna dla każdego z rozpatrywanych typów urządzeń. Stwierdzono również, że sygnały optyczne zarejestrowane przez aparat UV (250-280 nm), nie są najbardziej intensywnymi sygnałami zawartymi w promieniowaniu. Stosowanie spektrofotometru pozwoliło wykazać, że są bardziej intensywne komponentydługości fali, które są w zakresie od 320-380 nm.
Rocznik
Strony
102--104
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
  • University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics, Institute of Electric Power and Renewable Technologies, ul. Proszkowska 76, 45-758 Opole, Poland
autor
  • University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics, Institute of Electric Power and Renewable Technologies, ul. Proszkowska 76, 45-758 Opole, Poland
autor
  • University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics, Institute of Electric Power and Renewable Technologies, ul. Proszkowska 76, 45-758 Opole, Poland
Bibliografia
  • [1] Biswas S., Koley C., Chatterjee B., Chakravorti S., A Methodology for Identification and Localization of Partial Discharge Sources Using Optical Sensors, IEEE Transactions on Dielectrics and Electrical Insulation,19 (2012), 18-28
  • [2] Coenen S., Tenbohlen S., Location of PD sources in power transformers by UHF and acoustic measurements, IEEE Transactions on Dielectrics and Electrical Insulation, 19 (2012), nr.6
  • [3] Cleary G.P., Judd M.D., UHF and current pulse measurements of partial discharge activity in mineral oil. Science, IEE Proceedings of Measurement and Technology, 153 (2006), nr.2
  • [4] Nasrat L.S., Hamed A.F., Hamid M.A., Mansour S.H., Study the flashover voltage for outdoor polymer insulators under desert climatic conditions, Egypt. J. of Petroleum, 22 (2013), 1-8
  • [5] Abderrazzaq M.H., Abu Jalgif A.M., Characterizing of corona rings applied to composite insulators, Elec. Pow. Sys. Resear., 95 (2013),121-127
  • [6] Giriantari I., Monitoring the insulator condition by on-line voltage distribution measurement, IEEE Int. Conf. on Condition Monitoring and Diagnosis, (2008), 392-394
  • [7] Ma B., Zhou W., Wang T., Ding Y., Study on corona discharge test under power frequency voltage of the severe non-uniform electric field based on the UV-light imaging technology, IEEE 4th Asia-Pacific Conf. on Environmental Electromagnetics, (2006), 253-259
  • [8] Stolper R., Hart J., Mahatho N., The design and evaluation of a multi-spectral imaging camera for the inspection of transmission lines and substation equipment, World Insulator Congress and Exhibition, (2005)
  • [9] C., Zhao X., He S., Lei H., Jiang Z., Ye H., Jiang Z., Research on mechanism and ultraviolet imaging of corona discharges of electric device faults, IEEE Int. Symp. on Electrical Insulation, (2008), 690-693,.
  • [10] Zang C., Lei H., Jiang Z., Ye H., He S., Zhao X., Jiang Z., Study on application of ultra-violet instrument in external insulation detection of electric device, IEEE Int. Conf. on HV Engineering and Application, (2008), 391-393
  • [11] Zhou W., Li H., Yi X., Tu J., Yu J., A criterion for UV detection of AC corona inception in rod-plane air gap, IEEE Trans.,18 (2011), nr.1, 232-237
  • [12] Zmarzly D., Nagi L., Analysis of Ionizing Radiation Generated by Partial Discharges, Acta Phys. Pol. A, 125 (2014), 1377- 1379
  • [13] Borucki S., Boczar T., Cichon A., Investigation of the acoustic pressure distribution occurring around an aerial substation adjacent to apartment buildings, Arch. of Acous., 32 (2007), nr.4, 291-297
  • [14] Wotzka D., Zmarzly D., Boczar T., Numerical Simulation of Acoustic Wave Propagating in a Spherical Object Filled with Insulating Oil, Acta Phys. Pol. A,118 (2010), nr.6, 1272-1275 [15] Cichoń A., Borucki S., Wotzka D., Szmajda M., Characteristic of Acoustic Emission Signals Generated by the Contacts of the Selector, Acta Phys. Pol. A,122 (2012), nr.5, 804-807
  • [16] Cichoń A., Borucki S., Wotzka D., Modeling of Acoustic Emission Signals Generated in On Load Tap Changer, Acta Phys. Pol. A,125 (2014), 1396-1399
  • [17] Wotzka D., Boczar T., Acoustic emission signals analysis in electric power transformer model, Przegląd Elektrotechniczny, 86 (2010), 74-77
  • [18] Szmechta M., Boczar T., Frącz P., Frequency and Time- Frequency Analysis of Acoustic Cavitation Noise in Insulating Oils, Acta Phys. Pol. A, 120 (2011), 744-747
  • [19] Borucki S., Cichoń A., The influence of the power transformer load on vibroacoustic signal analysis results, Przegląd Elektrotechniczny, 86 (2010), 45-47
  • [20] Yan C., Hao Z., Zhang B., Zheng T., Zhang S., Chao G., Yang X., Zhou D., Simulation and analysis of power transformer internal arcing faults overpressure characteristics, Proc. 2014 Int. Conf. Power System Technology, 685 - 690
  • [21] Boya C., Ruiz-Llata M., Posada J., Garcia-Souto J.A., Identification of multiple partial discharge sources using acoustic emission technique and blind source separation, IEEE Tran. on Dielectrics and Electrical Insulation, 22 (2015), nr.3
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be686fe1-cd1c-472c-b9e4-a42de615e9d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.