Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In most countries, controlled landfills are currently the most common disposal method for municipal solid wastes (MSWs). Despite many benefits, the generation of heavily contaminated leachate with substantial differences in both chemical composition and flow rate represents a major drawback. The realization of this has compelled authorities to adopt ever more stringent establishment of pollution control requirements. Landfill leachate is a serious problem in the treatments of municipal solid wastes using landfills methods. This leachate is usually heavily contaminated, but little attention is paid to its treatment. Optimal treatment of leachates to completely decrease the harmful environmental impacts is today’s challenge. However, the complex composition of leachates makes it challenging to formulate general recommendations. Leachate variability, particularly over time and within sites, suggests that the most appropriate treatments are adaptable, universal, and simple. Landfill leachate is characterized by high biological and chemical oxygen demand and is usually composed of undesirable ingredients such as inorganic and organic pollutants. Landfill leachate varies with landfill age and content, decomposition methods, hydrological and climate conditions. Recirculation of leachate does not affect alterations in the degree of bio-degradability of the waste. During landfill operations, recirculation of leachate is often applied to help stabilize landfill degradation. Leachate recirculation is widely used in practical engineering, and recirculation using vertical wells is one of the more effective methods.
Czasopismo
Rocznik
Tom
Strony
172--183
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
- Environmental Engineering Department, Baghdad University, Baghdad, Iraq
- Environmental Engineering Department, Baghdad University, Baghdad, Iraq
Bibliografia
- 1. Ağdağ, O.N., Sponza, D.T. 2005. Effect of alkalinity on the performance of a simulated landfill bioreactor digesting organic solid wastes. Chemosphere, 59(6), 871–879.
- 2. Al-Ameen, J.A.A., Al-Hamdany, M.A. 2018. Babylon governorate municipal solid waste generation rate. Journal of Engineering, 24(9), 64–77.
- 3. Al-Yousfi, A.B., Pohland, F.G. 1998. Strategies for simulation, design, and management of solid wastes disposal sites as landfill bioreactors. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2(1), 13–21.
- 4. Aziz, S.Q., Aziz, H.A., Yusoff, M.S. 2011. Powdered activated carbon augmented double react-settle sequencing batch reactor process for treatment of landfill leachate. Desalination, 277(1–3), 313–320.
- 5. Bilgili, M.S., Demir, A., Varank, G. 2009. Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: a pilot scale study. Bioresource technology, 100(21), 4976–4980.
- 6. Cao, B.Y., Feng, S.J., Li, A.Z. 2018. CFD Modeling of anaerobic–aerobic hybrid bioreactor landfills. International Journal of Geomechanics, 18(7), 04018072.
- 7. Carpenter, P.J., Reddy, K.R., Thompson, M.D. 2013. Seismic imaging of a leachate-recirculation landfill: spatial changes in dynamic properties of municipal solid waste. Journal of Hazardous, Toxic, and Radioactive Waste, 17(4), 331–341.
- 8. Cho, J.K., Park, S.C., Chang, H.N. 1995. Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresource technology, 52(3), 245–253.
- 9. Feng, S.J., Cao, B.Y., Xie, H.J. 2017. Modeling of leachate recirculation using spraying–vertical well systems in bioreactor landfills. International Journal of Geomechanics, 17(7), 04017012.
- 10. Guérin, R., Munoz, M. L., Aran, C., Laperrelle, C., Hidra, M., Drouart, E., Grellier, S. 2004. Leachate recirculation: moisture content assessment by means of a geophysical technique. Waste Management, 24(8), 785–794.
- 11. He, R., Shen, D.S., Wang, J.Q., He, Y.H., Zhu, Y.M. 2005. Biological degradation of MSW in a methanogenic reactor using treated leachate recirculation. Process Biochemistry, 40(12), 3660–3666.
- 12. Ibrahim, J.A.A., Hussein, O.A. 2016. Adding Cellulosic Ash to Composting Mix as a Soil Amendment. Journal of Engineering, 22(4), 79–97.
- 13. Istirokhatun, T., Amalia, D.A., Oktiawan, W., Rezagama, A., Budihardjo, M.A., Nofiana, N., Susanto, H. 2018. Removal of refractory compounds from landfill leachate by using nanofiltration. Jurnal Teknologi, 80(3–2).
- 14. Kusch, S., Oechsner, H., Jungbluth, T. 2012. Effect of various leachate recirculation strategies on batch anaerobic digestion of solid substrates. International Journal of Environment and Waste Management, 9(1–2), 69–88.
- 15. Ledakowicz, S., Kaczorek, K. 2004. Laboratory simulation of anaerobic digestion of municipal solid waste. Journal of Environmental Science and Health, Part A, 39(4), 859–871.
- 16. Lee, C.M., Lin, X.R., Lan, C.Y., Lo, S.C.L., Chan, G.Y.S. 2002. Evaluation of leachate recirculation on nitrous oxide production in the Likang Landfill, China. Journal of environmental quality, 31(5), 1502–1508.
- 17. Liu, H., Huyan, Z., Cui, C., Luo, X., Jiang, X. 2021. Evaluation of leachate recirculation effect on the acceleration of waste mineralization process by using a coupled numerical model. Advances in Civil Engineering, 2021.
- 18. Ma, J., Li, Y., Li, Y. 2021. Effects of leachate recirculation quantity and aeration on leachate quality and municipal solid waste stabilization in semi-aerobic landfills. Environmental Technology & Innovation, 21, 101353.
- 19. Miller, D.E., Emge, S.M. 1997. Enhancing landfill leachate recirculation system performance. Practice periodical of hazardous, toxic, and radioactive waste management, 1(3), 113–119.
- 20. Mojiri, A., Zhou, J. L., Ratnaweera, H., Ohashi, A., Ozaki, N., Kindaichi, T., Asakura, H. 2021. Treatment of landfill leachate with different techniques: an overview. Journal of Water Reuse and Desalination, 11(1), 66–96.
- 21. Nanda, S., Berruti, F. 2021. Municipal solid waste management and landfilling technologies: a review. Environmental Chemistry Letters, 19(2), 1433–1456.
- 22. Oktiawan, W., Priyambada, I. B., Purwono, P. 2021. Effect of leachate recirculation and bulking agent on leachate quality. In IOP Conference Series: Earth and Environmental Science, 896(1), 012021.
- 23. Ozkaya, B., Demir, A., Basturk, A., Bilgili, M.S. 2004. Investigation of leachate recirculation effects in Istanbul Odayeri Sanitary Landfill. Journal of Environmental Science and Health, Part A, 39(4), 873–883.
- 24. Priyambada, I.B., Oktiawan, W. 2020. Impact of Leachate Recirculation on Stabilization of Solid Wastes Leachate in Simulated Anaerobic Bioreactors. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 448(1), 012127.
- 25. Radeef, A.Y., Ismail, Z.Z. 2021. Resource recovery in potato chips processing industry: green bioelectricity production using continuous mediatorless microbial fuel cell. International Journal of Green Energy, 18(9), 910–919.
- 26. Reddy, K.R., Giri, R.K., Kulkarni, H.S. 2017. Modeling coupled hydromechanical behavior of landfilled waste in bioreactor landfills: numerical formulation and validation. Journal of Hazardous, Toxic, and Radioactive Waste, 21(1), D4015004.
- 27. Reddy, K.R., Kulkarni, H.S., Khire, M.V. 2013. Two-phase modeling of leachate recirculation using vertical wells in bioreactor landfills. Journal of Hazardous, Toxic, and Radioactive Waste, 17(4), 272–284.
- 28. Redhwa, Q.K., Al-Ameen, J.A.A. 2020. Landfill Liner: A Review of Materials and Enhancement Potential. International Journal of Innovation, Creativity and Change, 14(9).
- 29. Reinhart, D.R., Basel Al-Yousfi, A. 1996. The impact of leachate recirculation on municipal solid waste landfill operating characteristics. Waste Management & Research, 14(4), 337–346.
- 30. Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F., Moulin, P. 2008. Landfill leachate treatment: Review and opportunity. Journal of hazardous materials, 150(3), 468–493.
- 31. Rodrıguez, J., Castrillon, L., Maranon, E., Sastre, H., Fernandez, E. 2004. Removal of non-biodegradable organic matter from landfill leachates by adsorption. Water Research, 38(14–15), 3297–3303.
- 32. Schiappacasse, M.C., Palma, J., Poirrier, P., Ruiz-Filippi, G., Chamy, R. 2010. Improved sanitary landfill design using recirculation of anaerobically treated leachates: generation of advanced design criteria. Electronic Journal of Biotechnology, 13(3), 9–10.
- 33. Shahriari, H., Warith, M., Hamoda, M., Kennedy, K.J. 2012. Effect of leachate recirculation on mesophilic anaerobic digestion of food waste. Waste management, 32(3), 400–403.
- 34. Soh, I.E., Hettiaratchi, J.P. 2009. Potential lateral migration of leachate in flushing bioreactor landfills during aggressive leachate recirculation. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 13(3), 174–178.
- 35. Top, S., Akkaya, G.K., Demir, A., Yıldız, Ş., Balahorli, V., Bilgili, M.S. 2019. Investigation of leachate characteristics in field-scale landfill test cells. International Journal of Environmental Research, 13(5), 829–842.
- 36. Tran, H.N., Münnich, K., Fricke, K., Harborth, P. 2014. Removal of nitrogen from MBT residues by leachate recirculation in combination with intermittent aeration. Waste management & research, 32(1), 56–63.
- 37. Vavilin, V.A., Rytov, S.V., Lokshina, L.Y., Pavlostathis, S.G., Barlaz, M.A. 2003. Distributed model of solid waste anaerobic digestion: effects of leachate recirculation and pH adjustment. Biotechnology and Bioengineering, 81(1), 66–73.
- 38. White, J.K., Beaven, R.P., Powrie, W., Knox, K. 2011. Leachate recirculation in a landfill: Some in- sights obtained from the development of a simple 1-D model. Waste Management, 31(6), 1210–1221.
- 39. Zhang, D.Q., He, P.J., Shao, L.M. 2009. Effect of pH-neutralized leachate recirculation on a combined hydrolytic–aerobic biopretreatment for municipal solid waste. Bioresource technology, 100(17), 3848–3854.
- 40. Zhang, P., Liu, H., Jiang, X., Lv, H., Cui, C., Huyan, Z. 2021. Numerical Model of Leachate Recirculation in Bioreactor Landfills with High Kitchen Waste Content. Water, 13(13), 1750.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be675ccf-cfcd-4b86-84b3-5c8b32db97bb