PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Element transfer at the soil-plant interface and accumulation strategies of vegetation overgrowing mining waste dumps in the Upper Silesia area (Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We describe new data constraining patterns of interaction of soils and vegetation in post-coal-mining and post-smelting waste heaps of Upper Silesia. Mosses show the highest levels of many elements. We use 3 standard bioconcentration indices to show directions of transfer of both trace and major elements (53 in soils, 37 in plants) in particular plant organs. Solanum nigrum around organic- and S-rich fumaroles of the “Ruda” heap (Zabrze) shows 36 indices with values ≥2 (31-element basis) suggesting the largest hyperaccumulation potential (HP), especially of Cd, Mo, Sr, Zn, Mn and Au; also Hg, U, Al, Ti, Fe, Cu, Au and few others. Verbascum (4 specimens) shows HP for Tl, Sb, Cd and Sr. It is the major scavenger of V, Cr, Co, Ni, Ga, As, Hg, P and Bi, and occasionally of B, Hg, Au and Te. Crepis mollis shows evident affinity for W and Au, and Solidago gigantea for Ag. Anomalies of W are also present in mosses (2 specimens) and a grass, and of Au in one moss, Tussilago farfara and Eupatorium cannabinum. Most elements are transferred to leaves, with the partial exception of Cd and Tl. Variable behaviour is found for Cd, Tl, Cu, Se, Sr, Mo; Cu, Zn, B and W.
Rocznik
Strony
art. no. 40
Opis fizyczny
Bibliogr. 138 poz., fot., rys., tab., wykr.
Twórcy
  • Institute of Geological Sciences PAS, Twarda 51/55 Str., PL-00-818 Warszawa, Poland
  • Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warszawa, Poland
  • Institute of Geological Sciences PAS, Twarda 51/55 Str., PL-00-818 Warszawa, Poland
  • Institute of Geological Sciences PAS, Twarda 51/55 Str., PL-00-818 Warszawa, Poland
Bibliografia
  • 1. Adamo, P., Giordano, S., Vingiani, S., Castaldo Cobianchi, R., Violante, P., 2003. Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy). Environmental Pollution, 122: 91-103.
  • 2. Al Harbawee, W.E.Q., Kluchagina, A.N., Anjum, N.A., Bashmakov, D.I., Lukatkin, A.S., Pereira, E., 2016. Evaluation of cotton burdock (Arctium tomentosum Mill.) responses to multi-metal exposure. Environmental Science and Pollution Research , 24: 5431-5438; https://doi:10.1007/s11356-016-8244-2
  • 3. Antonijević, M.M., Dimitrijević, M.D., Milic, S.M., Nujkić, M.M., 2012. Metal concentration in the soils and native plants surrounding the old flotation tailings pond of the Copper Mining and Smelting Complex Bor (Serbia). Journal of Environmental Monitoring, 14: 886; https://doi:10.1039/c2em10803h
  • 4. Arslan, H., Güleyrüz, G., Leblebici, Z., Kýrmýzý, S., Aksoy, A., 2010. Verbascum bombyciferum Boiss. (Scrophulariaceae) as possible bio-indicator for the assessment of heavy metals in the environment of Bursa, Turkey. Environmental Monitoring and Assessment, 163: 105-113.
  • 5. Atanassova, I.D., Benkova, M.G., Simeonova, T.R., Nenova, L.G., Banov, M.D., Doerr, S.H., Rousseva, S.S., 2018. Heavy metal mobility and PAHs extractability relationships with soil hydrophobicity in coal ash reclaimed technogenic soils (Technosols). Global Symposium on Soil Pollution, 2-4 May 2018, Fao, Rome, Italy.
  • 6. Azizov, U.M., Khadzhieva, U.A., Rakhimov, D.A., Mezhlumyan, L.G., Salikhov, S.A., 2011. Chemical composition of dry extract of Arctium lappa roots (in Russian with English summary). Chemistry of Natural Compounds, 47: 1038-1039.
  • 7. Baroni, F., Boscagli, A., Protano, G., Riccobono, F., 2000. Antimony contents in plant species growing in an Sb-mining district (Tuscany, Italy). In: Trace Elements - Their Distribution and Effects in the Environment (eds. B. Markert and K. Friese): 341-361.
  • 8. Bech, J., Poschenrieder, C., Barceló, J., Lansac, A., 2002. Plants from mine spoils in the South American area as potential sources of germplasm for phytoremediation technologies. Acta Biotechnologica, 22: 5-11.
  • 9. Belzile, N., Chen., Y.-W., 2015. Tellurium in the environment: a critical review focused on natural waters, soils, sediments, and airborne particles. Applied Geochemistry, 63: 83-92; https://doi:10.1016/j.apgeochem.2015.07.002
  • 10. Berthelot, C., Blaudez, D., Beguiristain, T., Chalot, M., Leyval, C., 2018. Co-inoculation of Lolium perenne with Funneliformis mosseae and the dark septate endophyte Cadophora sp. in a trace element-polluted soil. Mycorrhiza, 28: 301-314.
  • 11. Bertin, P.N., Crognale, S., Plewniak, F., Battaglia-Brunet, F., Rossetti, S., Mench, M., 2022. Water and soil contaminated by arsenic: the use of microorganisms and plants in bioremediation. Environmental Science and Pollution Research, 29: 9462-9489.
  • 12. Bielecka, A., Królak, E., 2019. Solidago canadensis as a bioaccumulator and phytoremediator of Pb and Zn. Environmental Science and Pollution Research, 26: 36942-36951.
  • 13. Boostani, H., Mahmoodi, A., Farrokhnejad, E., 2016. Determination of essential nutrients in some indigenous pharmacological plants growing in Fars Province, Iran. Journal of Chemical Health Risks, 6: 105-112.
  • 14. Borowiak, K., Budka, A., Lisiak-Zielińska, M., Hanc, A., Zbierska, J., Barałkiewicz, D., Kayzer, D., Gaj, R., Szymczak-Graczyk, A., Kanclerz, J., 2020. Accumulation of airborne toxic elements and photosynthetic performance of Lolium multiflorum L. Leaves. Processes, 8: 1013; https://doi:10.3390/pr8091013
  • 15. Borzęcki, R., 2004. Górnictwo rud uranu w Polsce (in Polish). Otoczak 31, 28-43; Archiwum Muzeum Minerałów, ozpataf.redbor.pl/lokalizacje/lokalizacje/0_gornictwo_uranu.htm (retrieved 05.05.2023)
  • 16. Boukaka, Kh., Mayache, B., 2020. Phytoremediation of soil contaminated by heavy metals within a technical landfill center vicinity: Algerian case study. Pollution, 6: 811-826.
  • 17. Brankovic, S., Brkovic, D., Đelic, G., Simic, Z., Markovic, G., Mladenovic, J., Glišic, R., Salic, R., 2020. Bioakumulacioni I translokacioni potencijal vrste Eupatorium cannabinum L. XXV Savetovanje o Biotehnologiji (conference), Zbornik Radova 1, Čačak, 13-14.03.2020: 9-16.
  • 18. Busby, R.R., Douglas, T.A., LeMonte, J.J., Ringelberg, D.B., Indest, K.J., 2021. Metal accumulation capacity in indigenous Alaska vegetation growing on military training lands. The U.S. Army Engineer Research and Development Center ERDCC MP-21-10 Final Report, Environmental Quality 6.2 Applied Research Program, Washington, DC, USA.
  • 19. Cesa, M., Campisi, B., Bizzotto, A., Ferraro, C., Fumagalli, F., Nimis, P.L., 2008. A factor influence study of trace element bioaccumulation in moss bags. Archives of Environmental Contamination and Toxicology, 55: 386-396.
  • 20. Cesa, M., Bizzotto, A., Ferraro, C., Fumagalli, F., Nimis, P.L., 2011. Oven-dried mosses as tools for trace element detection in polluted waters: a preliminary study under laboratory conditions. Plant Biosystems, 15: 832-840.
  • 21. Chrzan, A., 2016. Monitoring bioconcentration of potentially toxic trace elements in soils trophic chains. Environmental Earth Sciences, 75: 786; https://doi:10.1007/s12665-016-5595-4
  • 22. Cowden, P., 2018. Moss Biomonitoring of trace element deposition in Northwestern British Columbia, Canada. M.Sc. thesis, Trent University, Peterborough, ONT, CND.
  • 23. Cutillas-Barreiro, L., Fernández-Calvmo, D., Núńez-Delgado, A., Fernández-Sanjurjo, M.J., Álvarez-Rodríguez, E., Nóvoa-Muńoz J.C., Arias-Estévez, M., 2017. Pine bark amendment to promote sustainability in Cu-polluted acid soils: effects on Lolium perenne growth and Cu uptake. Water, Air & Soil Pollution, 228: 260; https://doi:10.1007/s11270-017-3437-y
  • 24. Čudic, V., Stojiljkovic, D., Jovrovic, A., 2016. Phytoremediation potential of wild plants growing on soil contaminated with heavy metals. Archives of Industrial Hygiene Toxicology (Arhiv za Higijenu Rada i Toksikologiju), 67: 229-239.
  • 25. Dambiec, M., Klink, A., Polechońska, L., 2022. Concentration and translocation of trace metals in Solidago gigantea in urban areas: a potential bioindicatior. International Journal of Environmental Science and Technology; https://doi:10.1007/s13762-022-03932-3
  • 26. Dastan, T., Sarac, H., 2018. Determination of the nutritional element concentrations of Evelik plant (Rumex crispus L.). Cumhuriyet Science Journal, 39: 1020-1024.
  • 27. Díaz, S., Villares, R., Carballeira, A., 2012. Uptake kinetics of As, Hg, Sb, and Se in the aquatic moss Fontinalis antipyretica Hedw. Water, Air and Soil Pollution, 223: 3409-3423.
  • 28. Dogan, Y., Baslar, S., Ugulu, I., 2014. A study on detecting heavy metal accumulation through biomonitoring: content of trace elements in plants at Mount Kazdađi in Turkey. Applied Geology and Environmental Research, 12: 627-636.
  • 29. Domínguez, M.T., Marańón, T., Murillo, J.M-., Schulin, R., Robinson, B.H., 2008. Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environmental Pollution, 152: 50-59.
  • 30. Erdemir, Ü.S., Arslan, H., Güleyrüz, G., Güçer, Ş., 2015. Responses of Verbascum olympicum Boiss. to excess manganese. Proceedings of the 14th International Conference on Environmental Science and Technology, Rhodes, Greece, 3-5 September 2015, CEST2015_00358.
  • 31. Evangelou, M.W.H., Conesa, H.M., Robinson, B.H., Schulin, R., 2012. Biomass production on trace element-contaminated land: a review. Environmental Engineering Science, 29: 823-839.
  • 32. Faiku, F., Haziri, A., Domozeti, B., Mehmeti, A., 2012. Total lipids, proteins, minerals and essential oils of Tussilago farfara (l.) from south part of Kosova. European Journal of Experimental Biology, 2: 1273-1277.
  • 33. Foisner, V., 2021. The relationship between plants and minerals - co-occurrences, uptake strategies, and indicator plants. M.Sc. thesis, Naturwissenschaftliche Fakultät, Paris-Lodron-University Salzburg.
  • 34. Gajić, G., Djurdjević, L., Kostić, O., Jarić, S., Stevanović, B., Mitrović, M., Pavlovic, P., 2018. Ecological potential for plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes. Frontiers in Environmental Science, 6: 124; https://doi:10.3389/fenvs.2018.00124
  • 35. Gajić, G., Djurdjević, L., Kostic, O., Jarić, S., Stevanović, B., Mitrović, M., Pavlović, P., 2020. Phytoremediation potential, photosynthetic and antioxidant response to arsenic-induced stress of Dactylis glomerata L. Sown ono fly ash deposits. Plants, 9, 657; https://doi:10.3390/plants9050657
  • 36. Gawor, Ł., 2014. Coal mining waste dumps as secondary deposits - examples from the Upper Silesian Coal Basin and the Lublin Coal Basin. Geology, Geophysics and Environment, 40: 285-289.
  • 37. Gawryluk, A., Wyłupek, T., Wolański, P., 2020. Assessment of Cu, Pb and Zn content in selected species of grasses and in the soil of the roadside embankment. Ecology and Evolution, 00: 1-12; https://doi:10.1002/ece3.6627
  • 38. Gąsecka, M., Drzewiecka, K., Magdziak, Z., Piechalak, A., Budka, A., Waliszewska, B., Szentner, K., Goliński, P., Niedzielski, P., Budzyńska, S., Mleczek, M., 2021. Arsenic uptake, speciation and physiological response of tree species (Acer pseudoplatanus, Betula pendula and Quercus robur) treated with dimethylarsinic acid. Chemosphere, 263: 127859; https://doi:10.1016/j.chemosphere.2020.127859
  • 39. Gholamhoseinian, A., Shahouzehi, B., Mohammadi, G., 2021. Trace elements content of some traditional plants used for the treatment of diabetes Mellitus. Bionterface Research in Applied Chemistry, 10: 6167-6173.
  • 40. Glišić, R.M., Simić, Z.B., Grbović, F.J., Rajičić, V.R., Brankovic, S.R., 2021. Phytoaccumulation of metals in three plant species of the Asteraceae family sampled along a highway. Notuale Botanicae Horti Agrobotanici Cluj-Napoca, 49: 12180; https://doi:10.15835/nbha49212180
  • 41. Godlewska, A., Ciepiela, G.A., 2016. Effect of the biostimulant Kelpak SL on the content of some microelements in two grass species. Journal of Elementology, 21: 373-381.
  • 42. González, H., Fernández-Fuego, D., Bertrand, A., González, A., 2019. Effect of pH and citric acid on the growth, arsenic accumulation, and phytochelatin synthesis in Eupatorium cannabinum L., a promising plant for phytostabilization. Environmental Science and Pollution Research; https:// doi:10/1007/s11356-019-05657-2
  • 43. Grygoć, K., Jabłońska-Czapla, M., 2021. Development of a tellurium speciation study using IC-ICP-MS on soil samples taken from an area associated with the storage, processing, and recovery of electrowaste. Molecules, 26: 2651; https://doi:10.3390/molecules26092651
  • 44. Güleyrüz, G., Erdemir, Ü.S., Arslan, H., Akpinar, A., Čiček, A., Güçer, Ş., 2015. Variation in trace element mobility and nitrogen metabolism of Verbascum olympicum Boiss. under copper stress. Chemistry and Ecology; https://doi:10.1080/02757540.2015.1043285
  • 45. Hajihashemi, S., Rajabpoor, S., Brestic, M., 2021. Introduction to the native plant species with phytoremediation potential growing in a high Fe and Zn contami nated site in the copper mine of Dehmadan, Iran. Mapping Intimacies, Research Square; https://doi:10.21203/rs.3.rs-1058712/v1
  • 46. Hammer, Ø., Harper, D.T., Ryan, P.D., 2001. Past: paleontological statistics software package for education and data analysis. Paleontologica Electronica, 4: 9; http://palaeo-electronica.org/2001_1/past/issue1_01.htm
  • 47. Han, R., Dai, H., Twardowska, I., Zhan, J., Wei, S., 2020. Aqueous extracts from the selected hyperaccumulators used as soil additives significantly improve accumulation capacity of Solanum nigrum L. for Cd and Pb. Journal of Hazardous Materials, 394: 122553; https://doi:10.1016/j.hazmat.2020.122553
  • 48. Hanczaruk, R., Kompała-Bąba, A., 2019. Effect of thermal activity on the differentiation of the vegetation of the “Ruda” postmining heap in Zabrze (Poland). Acta Agrobotanica, 72:1783; https://doi.org/10.5586/aa.1783
  • 49. He, H., Wei, H., Wang, Y., Wang, L., Qin, Z., Li, Q., Shan, F., Fan, Q., Du, Y., 2022. Geochemical and statistical analyses of trace elements in lake sediments from Qaidam Basin, Qinghai-Tibet Plateau: distribution characteristics and source apportionment. International Journal of Environmental Research and Public Health, 19: 2431; https://doi:10.3390/ijerph19042341
  • 50. Hesami, R., Salimi, A., Ghaderian, S.M., 2017. Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead-zinc mine, Iran. Environmental Science and Pollution Research; https://doi:10.1007/s-11356-017-1156-y
  • 51. Hiller, E., Jurkovič, L., Majzlan, J., Kulikova, T., Faragó, T., 2021. Environmental availability of trace metals (mercury, chromium and nickel) in soils from the abandoned mine area of Merník (Eastern Slovakia). Polish Journal of Environmental Studies, 30: 5013-5025.
  • 52. Hunter, B.A., Johnson, M.S., Thompson, D.J., 1987. Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. I. Soil and Vegetation Contamination. Journal of Applied Ecology, 24: 573-586.
  • 53. Izquieta-Rojano, S., Elustondo, D., Ederra, A., Lasheras, E., Santamaría, C., Santamaría, J.M., 2016. Pleurochaete squarrosa (Brid.) Lindb. as an alternative moss species for biomonitoring surveys of heavy metal, nitrogen deposition and S15N signatures in a Mediterranean area. Ecological Indicators, 60: 1221-1228.
  • 54. Jaguś, A., Khak, V., Rzętała, M.A., Rzętała, M., 2012. Trace elements in the bottom sediments of the Irkutsk Reservoir. Ecological Chemistry and Engineering A, 19: 939-950.
  • 55. Jakovljević, K., Mišljenović, T., Savović, J., Ranković, D., Ranđelović, D., Mihailović, N., Jovanović, S., 2019. Accumulation of trace elements in Tussilago farfara colonizing post-flotation tailing sites in Serbia. Environmental Science and Pollution Research, 27: 4089-4103; https://doi:10.1007/s-11356-019-07010-z
  • 56. Jankowski, K., Malinowska, E., Ciepiela, G.A., Jankowska, J., Wiśniewska-Kadżajan, B., Sosnowski, J., 2018. Lead and cadmium content in grass growing near an expressway. Archives of Environmental Contamination and Toxicology; https://doi:10.1007/s00244-018-0565-3
  • 57. Kabata-Pendias, A., Pendias, H., 2001. Trace Elements in Soils and Plants. 3rd ed,., CRC Press LLC, Boca Raton, FL, USA.
  • 58. Kandić, I., Kragović, M., Petrović, J., Janaćković, P., Gavrilović, M., Momčilović, M., Stojmenović, M., 2023. Heavy metals content in selected medicinal plants produced and consumed in Serbia and their daily intake in herbal infusions. Toxics, 11: 98; https://doi:10.3390/toxics11020198
  • 59. Karbowska, B., 2016. Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods. Environmental Monitoring and Assessment, 188: 640.
  • 60. Kataweteetham, L., Rong, G., Zhu, J., Chu, Y., Liu, S., 2020. Dendroremediation of metal and metalloid elements with poplar and willow in the floodplain area downstream a mining hill, Tongling, China. IOP Conference Series: Earth and Environmental Sciences, 453: 012026, GMEE2019; https://doi:10.1088/1755-1315/453/1/012026
  • 61. Kenny, C.-R., Ring, G., Sheehan, A., Mc Auliffe, M.A.P., Lucey, B., Furey, A., 2022. Novel metallomic profiling and non-carcinogenic risk assessment of botanical ingredients for use in herbal, phytopharmaceutical and dietary products using HR-ICP- SFMS. Scientific Reports (Nature), 12: 17582; https://doi:10.1038/s41598-022-16873-1
  • 62. Ketris, M.P., Yudovich, Ya. E., 2009. Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78: 135-148.
  • 63. Khan, A.R., Ullah, I., Waqas, M., Park, G.-S., Khan, A.L., Hong, S.-J., Ullah, R., Jung, B.K., Park, C.E., Ur-Rehman, S., Lee, I.-J., Shin, J.-H., 2017. Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicology and Environmental Safety, 136: 180-188.
  • 64. Khan, Q., Zahoor, M., Salman, S.M., Wahab, M., Ul Bari, W., 2022. Phytoremediation of toxic heavy metals in polluted soils and water of Dargai Malakand Khyber Pakhtunkhwa, Pakistan. Brazilian Journal of Biology (2024), 84: e265278; https://doi:10.1590/1519-6984.265278
  • 65. Kharytonov, M., Babenko, M., Velychko, O., Pardini, G., 2018. Prospects of medicinal herbs management in reclaimed minelands of Ukraine. Ukrainian Journal of Ecology, 8: 527-532.
  • 66. Kicińska, A., 2019. Arsenic, cadmium, and thallium content in the plants growing in close proximity to a zinc works - long-term observations. Journal of Ecological Engineering, 20: 61-69.
  • 67. Kissoon, L.T.T., Jacob, D.L., Otte, M.L., 2010. Multi-element accumulation near Rumex crispus roots under wetland and dryland conditions. Environmental Pollution, 158: 1834-1841.
  • 68. Kowalska, J., Stryjewska, E., Bystrzejewska-Piotrowska, G., Lewandowski, K., Tobiasz, M., Pałdyna, J., Golimowski, J., 2012. Studies of plants useful in the re-cultivation of heavy metals-contaminated wasteland - a new hyperaccumulator of barium? Polish Journal of Environmental Studies, 21: 401-405.
  • 69. Kobierski, M., Tomaszewska-Sowa, M., Figas, A., Sawilska, A.K., 2017. Bioaccumulation of heavy metals in herbal plants from areas not exposed to heavy anthropopressure. Polish Journal of Soil Science, L/1: 41-53.
  • 70. Korzeniowska, J., Krąż, P., Dorocki, S., 2021. Heavy metal content in the plants (Pleurozium schreberi and Picea abies) of environmentally important protected areas of the Tatra National Park (the Central Western Carpathians, Poland). Minerals, 11: 1231; https://doi:10.3390/min11111231
  • 71. Królak, E., Bielecka, A., Strzałek, M., 2020. Determination of magnesium, manganese, copper and zinc in infusions of inflorescences and leaves of Solidago canadensis. Journal of Elementology, 25: 1489-1498.
  • 72. Kruszewski, Ł., 2018. Geochemical Behavior of trace elements in the Upper and Lower Silesian Basin Coal-Fire Gob Piles of Poland. In: Coal and Peat Fires: A Global Perspective (ed. G.B. Stracher), 5 - “Case Studies - Advances in Field and Laboratory Research”: 407-449; ISBN 978-0-12-849885-9
  • 73. Kruszewski, Ł., Fabiańska, M.J., Ciesielczuk, J., Segit, T., Orłowski, R., Motyliński, R., Moszumańska, I., Kusy, D., 2018. First multi-tool exploration of a gas-condensate-pyrolysate system from the environment of burning coal mine heaps: An in situ FTIR and laboratory GC and PXRD study based on Upper Silesian materials. Science of the Total Environment., 640-641: 1044-1071.
  • 74. Kruszewski, Ł., Fabiańska, M.J., Segit, T., Kusy, D., Motyliński, R., Ciesielczuk, J., Deput, E., 2019. Carbon-nitrogen compounds, alcohols, mercaptans, monoterpenes, acetates, aldehydes, ketones, SF6, PH3, and other fire gases in coal-mining waste heaps of Upper Silesian Coal Basin (Poland) - a re-investigation by means of in-situ FTIR external database approach. Science of the Total Environment, 698: 134274; https://doi:10.1016/j.scitotenv.2019.134274
  • 75. Kruszewski, Ł., Kisiel, M., Cegiełka, M., 2021. Soil development in the coal fire environment: a case of Upper Silesian waste heaps. Geological Quarterly, 65: 24; https://doi:10.7306/gq.1592
  • 76. Lazo, P., Steinnes, E., Qarri, F., Allajbeu, S., Kane, S., Stafilov, T., Frontasyeva, M.V., Harmens, H., 2017. Origin and spatial distribution of metals in moss samples in Albania: a hotspot of heavy metal contamination in Europe. Chemosphere; https://doi:10/1016/j.chemosphere.2017.09.132
  • 77. Lommel, L., 2021. Suitability of marginal sites contaminated by trace elements for the production of non-food biomass: lessons from lysimeter experiments. M.Sc. thesis, Liege University, Gembloux Agro-Bio Tech.
  • 78. Maheswari, B.U., Srinivasalu, S., Mohan, V.R., Lakshumanan, C., Santhiya, G., 2013. Environmental cycling and bioaccumulation of trace elements around Pakkanadu, Salem district, Tamil Nadu, India. Pollution Research, 32: 79-86.
  • 79. Makuch-Pietraś, I., Grabek-Lejko, D., Kasprzyk, I., 2023. Antioxidant activities in relation to the transport of heavy metals from the soil to different parts of Betula pendula (Roth.). Journal of Biological Engineering, 17: 19; https://doi:10.1186/s13036-022-00322-8
  • 80. Malik, R.N., Husain, S.Z., Nazir, I., 2010. Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pakistan Journal of Botany, 42: 291-301.
  • 81. Maqbool, A., Ali, S., Rizwan, M., Arif, M.S., Yasmeen, T., Riaz, M., Hussain, A., Noreen, S., Abdel-Daim, M.A., Alkahtani, A., 2020. N-Fertilizer (Urea) enhances the phytoextraction of cadmium through Solanum nigrum L. International Journal of Environmental Research and Public Health, 17: 3850; https://doi:10.3390/ijerph17113850
  • 82. Marmiroli, M., Imperiale, D., Maestri, E., Marmiroli, N., 2013. The response of Populus spp. To cadmium stress: chemical, morphological and proteomics study. Chemosphere, 93: 1333-1344.
  • 83. Mleczek, M., Goliński, P., Krzesłowska, M., Gąsecka, M., Magdziak, Z., Rutkowski, P., Budzyńska, S., Waliszewska, B., Kozubik, T., Karolewski, Z., Niedzielski, P., 2017. Phytoextraction of potentially toxic elements by six tree species growing on hazardous mining sludge. Environmental Science and Pollution Research, 24: 22183-22195.
  • 84. Morina, F., Jovanović, L., Mojović, M., Vidović, M., Panković, D., Veljović Jovanović, S., 2010. Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiologia Plantarum, 140: 209-224.
  • 85. Nworie, O.E., Qin, J., Lin, C., 2019. Trace element uptake by herbaceous plants from the soils at a multiple trace element-contaminated site. Toxics, 7: 3; https://doi:10/3390/toxics7010003
  • 86. Opeńa, J.L., Halasz, G.E., Árgyelan, J.T., Horvath, M.K., 2022. Phytoremediation of potential toxic elements by native tree species in mined- spoiled soils in Mátraszentimre, Hungary. Journal of Environmental Science and Management, 25: 51-62.
  • 87. Osmani, M., Bani, A., Gjoka, F., Pavlova, D., Naqellari, P., Shahu, E., Duka, I., Echevarria, G., 2018. The natural plant colonization of ultramafic post-mining area of Perrenjas, Albania. Periodico di Mineralogia, 87: 135 -146.
  • 88. Patorczyk-Pytlik, B., 2009. The content of selenium in some species of meadow plants. Journal of Elementology, 14: 745-754.
  • 89. Pavlović, D., Pavlović, M., Marković, M., Karadžić, B., Kostić, O., Jarić, S., Mitrović, M., Gržetić, I., Pavlović, P., 2017. Possibilities of assessing trace metal pollution using Betula pendula Roth. leaf and bark - Experience in Serbia. Journal of the Serbian Chemical Society, 82: 723-767.
  • 90. Pedreiro, S., de Ressurreięao, S., Lopes, M., Cruz, M.T., Batista, T., Figueirinha, A., Ramos, F., 2021. Crepis vesicaria L. subsp. Taraxacifolia leaves: nutritional profile, phenolic composition and biological properties. International Journal of Environmental Research and Public Health, 18: 151; https://doi:10.3390/ijerph18010515
  • 91. Pingitore, N.E., Engle, M.A., 2022. Compositional closure - its origin lies not in mathematics but rather in nature itself. Minerals, 12: 74; https://doi:10.3390/min12010074
  • 92. Popova, E., 2019. Accumulation of heavy metals in soil and plants adjacent to municipal soild waste disposal facility. IOP Conference Series: Journal of Physics: Conference Series, 1145: 012021; https://doi:10.1088/1742-6596/1145/1/012021
  • 93. Przybysz, A., Wińska-Krysiak, M., Małecka-Przybysz, M., Stankiewicz-Kosyl, M., Skwara, M., Kłos, A., Kowalczyk, S., Jarocka, K., Sikorski, P., 2020. Urban wastelands: on the frontline between air pollution sources and residential areas. Science of the Total Environment, 721: 137695; https://doi: 10.1016/j.scitotenv.2020.137695
  • 94. Przybytek, J., 2015. Podziemny pożar hałdy w starym Brynowie (zdjęcia). Strażacy walczą już 4. Dzień. Katowice Nasze Miasto, https://katowice.naszemiasto.pl/podziemnym-pozar-haldy-w-starym-brynowie-zdjecia-strazacy/ar/c3-3546408 (retrieved 05.05.2023)
  • 95. PZPWŚ, 2004. Plan Zagospodarowania Przestrzennego Województwa Śląskiego. Marszałek Województwa Śląskiego, Katowice, 21.05.2004, https://planzagospodarowania.slaskie.pl (retrieved 24.02.2021)
  • 96. Radziemska, M., 2017. Aided phytostabilization of copper contaminated soils with L. perenne and mineral sorbents as soil amendments. Civil and Environmental Engineering Reports, 26: 079-89; https://doi:10.1515/ceer-2017-0037
  • 97. Rafati, M., Khorasani, N., Moattar, F., Shirvany, A., Moraghebi, F., Hoissenzadeh, S., 2011. Phytoremediation Potential of Populus alba and Morus alba for Cadmium, Chromium and Nickel Absorption from Polluted Soil. International Journal of Environmental Research, 5(4): 961-970.
  • 98. Rahmonov, O., Krzysztofik, R., Środek, D., Smolarek-Lach, J., 2020. Vegetation- and environmental changes on non-re- claimed spoil heaps in Southern Poland. Biology, 9: 164; https://doi:10.3390/biology9070164
  • 99. Rees, R., Robinson, B.H., Menon, M., Lehmann, E., Günthardt-Goerg, M.S., Schulin, R., 2011. Boron Accumulation and toxicity in hybrid poplar (Populus nigra - euramericana). Environmental Science and Technology, 45: 10538-10543.
  • 100. Robinson, B.H., Bischofberger, S., Stoll, A., Schroer, D., Furrer, G., Roulier, S., Gruenwald, A., Attinger, W., Schulin, R., 2008. Plant uptake of trace elements on a Swiss military shooting range: Uptake pathways and land management implications. Environmental Pollution, 153: 668-676.
  • 101. Rustowska, B., 2022. Long-term wildfire effect on nutrtient distribution in silver birch (Betula pendula Roth) biomass. Soil Science Annual, 73: 149943; https://doi:10.37501/soilsa149943
  • 102. Salihaj, M., Bani, A., Echevarria, G., 2016. Heavy metal uptake by hyperaccumulating flora in some serpentine soils of Kosovo. Global NEST Journal, 18: 214-222.
  • 103. Salinitro, M., Tassoni, A., Casolari, S., de Laurentiis, F., Zappi, A., Melucci, D., 2019. Heavy metals bioindication potential of the common weeds Senecio vulgaris L., Polygonum aviculare L. and Poa annua L. Molecules, 24: 2813; https://doi:10.3390/molecules24152813
  • 104. Sasmaz, M., Senel, G.U., Obek, E., 2021. Boron bioaccumulation by the dominant macrophytes grown in various discharge water environments. Bulletin of Environmental Contamination and Toxicology; https://doi:10.1007/s00128-021-03222-7
  • 105. Savignan, L., Faucher, S., Chéry, P., Lespes, G., 2020. Platinum group elements contamination in soils: review of the current state. Chemosphere, 271: 129517; https://doi:10.1016/j.chemosphere.2020.129517
  • 106. Shacklette, H.T., Boerngen, J.G., 1984. Element concentrations in soils and other surficial ma terials of the conterminous United States. U.S. Geological Survey Professional Paper 1270, US Government Printing Office, Washington, USA.
  • 107. Siddiqui, A., Hussain, M., Hameed, M., Ahmad, R., 2020. Seasonal variations in essential trace elemental status of Solanum nigrum L. collected from mountainous range of Pakistan. Big Data in Agriculture (BDA), 2: 13-16.
  • 108. Siebielec, S., Siebielec, G., Sugier, P., Woźniak, M., Grządziel, J., Gałązka, A., Stuczyński, T., 2020. Activity and diversity of microorganisms in root zone of plant species spontaneously inhabiting smelter waste piles. Molecules, 25: 5638; https://doi:10.3390/molecules25235638
  • 109. Sitko, K., Opała-Owczarek, M., Jemioła, G., Gieroń, Ż., Szopiński, M., Owczarek, P., Rudnicka, M., Małkowski, E., 2022. Effect of Drought and Heavy Metal Contamination on Growth and Photosynthesis of Silver Birch Trees Growing on Post-Industrial Heaps. Cells, 11: 53; https://doi:10.3390/cells11010053
  • 110. Siwek, M., 2008a. Plants in postindustrial sites, contaminated with heavy metals. Part I. Uptake, transport and toxicity of heavy (trace) metals] (in Polish with English summary). Wiadomości Botaniczne, 52: 7-22.
  • 111. Siwek, M., 2008b. Plants in postindustrial site, contami nated with heavy metals. Part II. Mechanisms of detoxification and strategies of plant adaptation to heavy metals] (in Polish with English summary). Wiadomości Botaniczne, 53: 7-23.
  • 112. Sun, L., Cao, X., Li, M., Zhang, X., Li, X., Cui, Z., 2017. Enhanced bioremediation of lead-contaminated soil by Solanum nigrum L. with Mucor circinelloides. Environmental Science and Pollution Research; https://doi:10.1007/s11356-017-8637-x
  • 113. Suo, Y., Tang, N., Li, H., Corti, G., Jiang, L., Huang, Z., Zhang, Z., Huang, J., Wu, Z., Feng, C., Zhang, X., 2021. Long-term effects of phytoextraction by a poplar clone on the concentration, fractionation, and transportation of heavy metals in tailings. Environmental Science and Pollution Research, 28: 47528-47539; https://doi:10.1007/s11356-021-13864-z
  • 114. Szwalec, A., Lasota, A., Kędzior, R., Mundała, P., 2018. Variation in heavy metal content in plants growing on a zinc and lead tailings dump. Applied Ecology and Environmental Research, 16: 5081-5094.
  • 115. Świsłowski, P., Nowak, A., Wacławek, S., Silvestři, D., Rajfur, M., 2022. Bioaccumulation of trace elements from aqueous solutions by selected terrestrial moss species. Biology, 11: 1692; https://doi:10.3390/biology11121692
  • 116. Tagami, K., Uchida, S., 2008. Determination of bioavailable rhenium fraction in agricultural soils. Journal of Environmental Radioactivity, 99: 973-980.
  • 117. Tomaszewska-Sowa, M., Kobierski, M., Sawilska, A.K., Figas, A., 2018. Assessment of phytoaccumulation of trace elements in medicinal plants from natural habitats. Herba Polonica, 64: 11-19.
  • 118. Ugulu, I., Dogan, Y., Baslar, S., Varol, O., 2012. Biomonitoring of trace element accumulation in plants growing at Murat Mountain. International Journal of Environmental Science and Technology, 9: 527-534.
  • 119. Vanderhoeven, S., Dassonville, N., Meerts, P., 2005. Increased topsoil mineral nutrient concentrations under exotic invasive plants in Belgium. Plant and Soil, 275: 169-179.
  • 120. Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriansen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., van der Lelie, D., Mench, M., 2009. Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16: 765-794.
  • 121. Visconti, D., Álvarez-Robles, M.J., Fiorentino, N., Fagnano, M., Clemente, R., 2020. Use of Brassica juncea and Dactylis glomerata for the phytostabilization of mine soils amended with compost or biochar. Chemosphere, 260: 127661; https://doi: 10.1016/j.chemosphere.2020.127661
  • 122. Vural, A., 2017. Gold and Silver Content of Plant Helichrysum arenarium, Popularly Known as the Golden Flower, Growing in Gümüşhane, NE Turkey. Acta Physica Polonica A, 132: 978-980.
  • 123. Vural, A., 2018. Relationship between the geological environment and element accumulation capacity of Helichrysum arenarium. Arabian Journal of Geosciences, 11: 258; https://doi:10.1007/s12517-018-3609-0
  • 124. Wechtler, L., Laval-Gilly, P., Bianconi, O., Walderdorff, L., Bonnefoy, A., Falla-Angel, J., Henry, S., 2019. Trace metal uptake by native plants growing on a brownfield in France: zinc accumulation by Tussilago farfara L. Environmental Science and Pollution Research , 26: 36055-36062; https://doi:10.1007/s11356-019-06892-3
  • 125. Wierzbicka, M., Szarek-Łukaszewska, G., Grodzińśka, K., 2004. Highly toxic thallium in plants from the vicinity of Olkusz (Poland). Ecotoxicology and Environmental Safety, 59: 84-88.
  • 126. Wojewódka-Przybył, M., Stienss, J., Kruszewski, £., 2022. Accumulation of elements in vegetation spontaneously developing on self-heating waste dumps in the Upper Silesia area (Poland). Geological Quarterly, 66: 29; https://doi:10.7306/gq.1662
  • 127. Wołejko, E., Butarewicz, A., Wydro, U., Łoboda, T., 2015. Effects of different kinds of sewage sludge amendment on urban lawn grasses. Journal of Ecological Engineering, 16: 164-170.
  • 128. Wu, Q., Leung, J.Y.S., Huang, X., Yao, B., Yuan, X., Ma, J., Guo, S., 2015. Evaluation of the ability of black nightshade Solanum nigrum L. for phytoremediation of thallium-contaminated soil. Environmental Science and Pollution Research , 22: 11478-11487;https://doi:10.1007/s11356-015-4384-z
  • 129. Xu, Y., Yang, R., Zhang, J., Gao, L., Ni, X., 2021. Distribution and Dispersion of Heavy Metals in the Rock-soil-moss System in Areas Covered by Black Shale in the Southeast of Guizhou Province, China. Environmental Science and Pollution Research Square; https://doi:10.1007/s11356-021-15335-x
  • 130. Xue, X., Liu, G., 2014. Resistance and Distribution to Heavy Metals of Zoysia Sinica Hance and Rumex Crispus. Advanced Materials Research, 1010-1012: 117-120.
  • 131. Yabalak, E., Ibrahim, F., Erdođan Eliuz, E.A., Everest, A., Murat Gizir, A., 2020. Evaluation of chemical composition, trace element content, antioxidant and antimicrobial activities of Verbascum pseudoholotrichum. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology; https://doi:10.1080/11263504.2020.1852332
  • 132. Yang, G., Zheng, J., Tagami, K., Uchida, S., 2014. Soil-to-crop transfer factors of tellurium. Chemosphere, 111: 554-559.
  • 133. Yildiz, D., Kula, I., Ay, G., Baslar, S., Dogan, Y., 2010. Determination of trace elements in the plants of Mt. Bozdag, Izmir, Turkey. Archives of Bio logical Sciences,62: 733-740.
  • 134. Yun, L., Jensen, K.B., Larson, S.R., Waldron, B.L., 2018. Uptake of As, Cd, Cu, Fe, Mn, Pb, and Zn in pasture Grassem on Tyree metal contaminated soils from Montana. Journal of Agricultural Science and Botany, 2: 34-40.
  • 135. Zając, E., Zarzycki, J., 2013. The effect of thermal activity of colliery waste heapon vegetation development (in Polish with English summary). Annual Set The Environmental Protection, 15: 1862-1880.
  • 136. Zhang, J., Yang, N., Geng, Y., Zhou, J., Lei, J., 2019. Effects of the combined pollution of cadmium, lead and zinc on the phytoextraction efficiency of ryegrass (Lolium perenne L.). RSC Advances, 9, 20603; https://doi:10.1039/c9ra01986c
  • 137. Zhuang, P., Wang, Q.W., Wang, H.B., Shu, W.S., 2007. Phytoextraction of Heavy metals by eight plant species in the field. Water, Air & Soil Pollution, 184: 235-242.
  • 138. Zudova, Ye.Yu., Khvorost, O.P., 2021. The study of the elemental composition of common domestic types of the medicinal plant raw material. News of Pharmacy (Visnik Farmacij), 2: 14-19.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be57b70b-f881-4f30-943c-920c0947b791
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.