PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Study of the Energy Absorption Performance of 3D Printed Sandwich Structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, Fused Deposition Modeling (FDM) is a powerful tool for manufacturing complex components, due to its customizability, low cost, accessibility, and fast prototyping time. It is an alternative for creating thin-walled structures, as it allows for novel designs. This article focuses on the design and numerical evaluation of 3D printed sandwich structures for energy absorption applications. For this purpose, five structures of Acrylonitrile Butadiene Styrene (ABS) were designed. To ensure optimal performance, the 3D printing parameters were optimized based on the corresponding literature. The structures had cores based on polygonal and cell arrangements. The effects of cross-section and mass on energy absorption were analyzed, and parameters such as energy absorption, peak load, mean force, and crush force efficiency (CFE) were determined during the study. The structures were assessed by out-of-plane compression tests. The numerical analysis was executed using Abaqus finite element software. Results showed that the energy absorption performance is primarily determined by the geometry and density of the structures. The best performance was found for a circular cellular structure, with a CFE of 0.884.
Twórcy
  • Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez (UACJ), Ciudad Juárez, Chihuahua, México
  • Mechanical Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
  • Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez (UACJ), Ciudad Juárez, Chihuahua, México
  • Centro Nacional de Investigación y Desarrollo Tecnológico/TecNM, Cuernavaca, Morelos, México, México
  • Tecnológico Nacional de México campus Ciudad Guzmán, Ciudad Guzmán, Jalisco, México
  • Mechanical Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
  • Unidad Profesional Interdisciplinaria de Ingeniería, Campus Palenque (UPIIP)/IPN, Palenque, Chiapas, México
  • Departamento de Ciencias Básicas, Tecnológico Nacional de México campus Ciudad Juárez, Ciudad Juárez, Chihuahua, México
  • Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez (UACJ), Ciudad Juárez, Chihuahua, México
Bibliografia
  • 1. Spoerk M., Savandaiah C., Arbeiter F., Sapkota J., Holzer C. Optimization of mechanical properties of glass‐spheres‐filled polypropylene composites for extrusion‐based additive manufacturing. Polymer Composites Journal 2019, 40(2), 638–651.
  • 2. Ngo T. D., Kashani A., Imbalzano G., Nguyen K. T., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites; Part B: Engineering Journal 2018, 143: 172–196.
  • 3. Kristiawan R. B., Imaduddin F., Ariawan D., Ubai-dillah, Arifin Z. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Engineer- ing Journal 2021, 11(1), 639–649.
  • 4. Dawoud M., Taha I., Ebeid S. J. Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques. Journal of manufacturing Processes 2016; 21: 39–45.
  • 5. Pham D. T., Gault R. S. A comparison of rapid prototyping technologies. International Journal of machine tools and manufacture 1998, 38(10-11), 1257–1287.
  • 6. Rodríguez-Panes A., Claver J., Camacho A. M. The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis. Materials Journal 2018, 11(8), 1333.
  • 7. Bastarrechea A., Estrada Q., Zubrzycki J., Torres-Argüelles V., Reynoso E., Rodríguez-Mendez A., Coutiño E. Mechanical design of a low-cost ABS hand prosthesis using the finite element method. Journal of Physics: Conference Series 2021, 1736 (1), 012039.
  • 8. Yadav D. K., Srivastava R., Dev S. Design & fabrication of ABS part by FDM for automobile application. Materials Today: Proceedings Journal 2020, 26: 2089–2093.
  • 9. Zhao F., Li D., Jin Z. Preliminary Investigation of Poly-Ether-Ether-Ketone Based on Fused Deposition Modeling for Medical Applications. Materials Journal 2018, 11: 288.
  • 10. Haryńska A., Kucinska-Lipka J., Sulowska A., Gubanska I., Kostrzewa M., Janik H. Medical-grade PCL based polyurethane system for FDM 3D printing—characterization and fabrication. Materials Journal 2019, 12(6), 887.
  • 11. Pu’ad N. M., Haq R. A., Noh H. M., Abdullah H. Z., Idris M. I., Lee T. C. Review on the fabrication of fused deposition modelling (FDM) composite filament for biomedical applications. Materials Today: Proceedings Journal 2020, 29: 228–232.
  • 12. Mercado-Colmenero J. M., La Rubia M. D., Mata-Garcia E., Rodriguez-Santiago M., Martin-Doñate C. Experimental and numerical analysis for the mechanical characterization of pet polymers manufactured with fdm technology under pure uniaxial compression stress states for architectural applications. Polymers Journal 2020, 12(10), 2202.
  • 13. Diaz-Perete D., Mercado-Colmenero J.M., Valderrama-Zafra J.M., Martin-Doñate C. New Procedure for BIM Characterization of Architectural Models Manufactured Using Fused Deposition Modeling and Plastic Materials in 4.0 Advanced Construction Environments. Polymers Journal 2020, 12: 1498.
  • 14. Silva R. D. C., Castro G. M., Oliveira A. B. D. S., Brasil A. C., Luz S. M. Crashworthiness perfor-mance of hybrid energy absorbers using PET-G honeycomb structure. Mechanics Based Design of Structures and Machines Journal 2022, 1–26.
  • 15. Basurto-Vázquez O., Sánchez-Rodríguez E. P., McShane G. J., Medina, D. I. Load distribution on PET-G 3D prints of honeycomb cellular structures under compression load. Polymers Journal 2021, 13(12), 1983.
  • 16. Bodaghi M., Serjouei A., Zolfagharian A., Fotouhi M., Rahman H., Durand D. Reversible energy absorbing meta-sandwiches by FDM 4D printing. International Journal of Mechanical Sciences 2020; 173: 105451.
  • 17. Namvar N., Zolfagharian A., Vakili-Tahami F., Bodaghi M. Reversible energy absorption of elasto- plastic auxetic, hexagonal, and AuxHex structures fabricated by FDM 4D printing. Smart Material and Structures Journal 2022; 31(5): 055021.
  • 18. Andrew J. J., Alhashmi H., Schiffer A., Kumar S., Deshpande V. S. Energy absorption and self-sens- ing performance of 3D printed CF/PEEK cellular composites. Materials & Design Journal 2021, 208: 109863.
  • 19. Sankineni R., Ravi Kumar Y. Evaluation of Energy absorption capabilities and mechanical properties in FDM printed PLA TPMS structures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2022, 236(7), 3558–3577
  • 20. Zubrzycki J., Estrada Q., Staniszewski M., Marchewka M. Influence of 3D printing parameters by FDM method on the mechanical properties of manufactured parts. Advances in Science and Technology Research Journal 2022, 16(5), 52-63.
  • 21. Sarvestani H. Y., Akbarzadeh A. H., Niknam H., Hermenean K. 3D printed architected polymeric sandwich panels: Energy absorption and structural performance. Composite Structures Journal 2018, 200: 886–909.
  • 22. Menegozzo M., Cecchini A., Just-Agosto F. A., Serrano Acevedo D., Flores Velez O. J., Acevedo Figueroa I., De Jesús Ruiz J. A 3D-Printed Honey-comb Cell Geometry Design with Enhanced Energy Absorption under Axial and Lateral Quasi-Static Compression Loads. Applied Mechanics Journal 2022, 3(1), 296–312.
  • 23. Bolan M., Dean M., Bardelcik A. The Energy Absorption Behavior of 3D-Printed Polymeric Octet- Truss Lattice Structures of Varying Strut Length and Radius. Polymers Journal 2023, 15(3): 713.
  • 24. Estrada, Q., Reynoso, E., Szwedowicz, D., Rodriguez-Mendez, A., Coutiño, E., De la Mora, T., & Torres, C. Bending crashworthiness of bionic thin-walled structures inspired by sugar cane stalks. Journal of Physics: Conference Series, 2412(1), #012003.
  • 25. ASTM D 638–99, 1999, Standard Test Method for Tensile Strength of Plastics. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • 26. Jones G., Stopforth R. Mechanical design and development of the touch hand ii prosthetic hand. RD J. South African Inst. Mech. Eng Journal 2016, 32: 23–34.
  • 27. Kaveloglu, S., and Temiz, S. An experimen tal and finite element analysis of 3D printed honeycomb structures under axial compression. Polymers and Polymer Composites 2022, 30, 09673911221122333.
  • 28. Zhang, Y., Zong, Z., Liu, Q., Ma, J., Wu, Y., & Li, Q. Static and dynamic crushing responses of CFRP sandwich panels filled with different reinforced materials. Materials & Design 2017, 117, 396–408
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be579745-bb01-4edf-b7f7-403076e576be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.