Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A brief review of the evolution of denudation research since the 1960s is followed by a review of specific sediment yield variability in mountainous regions of the world as a function of spatial scale, relief, glaciation, lithology and disturbance type and location within the basin. A general model of scalar relations of suspended sediment yield for Canadian regions warns against comparing data from basins with areas ranging over several orders of magnitude. A regional summary of specific sediment yield in mountainous British Columbia confirms that in basins <1 km2 and >30,000 km2 specific sediment yield decreases with basin size whereas in basins of intermediate size (between 1 km˛ and 30,000 km˛) specific sediment yield increases with basin size. This effect is interpreted in terms of three distinct process zones in every mountain basin. These zones can be characterized as a) generally degrading hillslope zones, b) generally aggrading footslopes and valley sides, and c) channelized flows on valley floors demonstrating either net aggradation or degradation. These are identifiable repeating elements in such landscapes. Suspended sediment yield data from mountainous regions around the world are considered in light of the British Columbia model. Some support for the model is found where basins are stratified according to scale, relief, lithology, disturbance types, and location within each basin. Disturbance types include the presence of glaciers, land use activities of various kinds, such as increasing population pressure in the intertropical montane zone, changing population distribution and associated economic activities in the temperate montane zone, and potentially hydroclimate change.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
19--31
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
- Department of Geography, University of British Columbia, Vancouver, Canada
Bibliografia
- Aalto R., Dunne T., Guyot J.L., 2006. Geomorphic controls on Andean denudation rates. Journal of Geology 114: 85–99.
- Ahnert F., 1970. Functional relationships between denudation, relief and uplift in large mid-latitude drainage basins. American Journal of Science 268: 243–263.
- Ahnert F., 1987. Process-response models of denudation at different spatial scales. Catena Supp. 10: 31–50.
- Ballantyne C., 2002. Paraglacial geomorphology. Quaternary Science Reviews 21: 1935–2017.
- Beylich A., 2000. Geomorphology, sediment budget, and relief development in Austdalur, Austfirdir, East Iceland. Arctic, Antarctic and Alpine Research 32: 466–467.
- Beylich A., 2011. Mass transfers, sediment budgets and relief development in cold environments: results of long-term geomorphologic drainage basin studies in Iceland, Swedish Lapland and Finnish Lapland. Zeitschrift für Geomorphologie 55: 145–174.
- Bogen J., 1996. Erosion and sediment yield in Norwegian rivers. In: D.E.Walling, B.W.Webb (eds.), Erosion and Sediment Yield: Global and Regional Perspectives. International Association of Hydrological Sciences Special Publication 236: 73–84.
- Bogen J., Bønsnes T.E., 2004. The impact of erosion protection work on sediment transport in River Gråelva, Norway. In: V.Golosov, V.Belyaev, D.E.Walling (eds.), Sediment Transport Through the Fluvial System. International Association of Hydrological Sciences Special Publication 288: 155–164.
- Brardinoni F., Church M., Simoni A., Macconi P., 2012. Lithologic and glacially conditioned controls on regional debris flow dynamics. Geology 40: 455–458.
- Church M., Ham D., Hassan M., Slaymaker O., 1999. Fluvial clastic sediment yield in Canada: a scaled analysis. Canadian Journal of Earth Sciences 36: 1267–1280.
- Church M., Slaymaker O., 1989. Holocene disequilibrium of sediment yield in glaciated British Columbia. Nature 337: 452–454.
- Church M., Slaymaker O., 2016. Signatures of sediment yield in the world’s mountains. In: K.Mainali, S.Sicroff (eds.), Jack D. Ives, Montologist: Festschrift for a Mountain Advocate. Himalayan Association for the Advancement of Science, Lalitpur, Nepal: 67–93.
- Dadson S.J., Hovius N., Chen H., Dade W.B., Hsieh M-C., Willett S.D., Hu J-C., Horng M-J., Chen M-C., Stark C.P., Lague D., Lin J-C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogeny. Nature 426: 648–651.
- Dedkov A.P., Mozherin V.T., 1992. Erosion and sediment yield in mountain areas of the world. In: D.E.Walling, T.R.Davies, B.Hasholt (eds.), Erosion, Debris Flows and Environment in Mountain Regions. International Association of Hydrological Sciences Special Publication 209: 29–36.
- Gran K.B., Montgomery D.R., 2005. Spatial and temporal patterns in fluvial recovery following volcanic eruptions: channel response to basin-wide sediment loading at Mount Pinatubo, Philippines. Geological Society of America Bulletin 117: 195–211.
- Guyot J.L., Filizola N., Quintanilla J., Cortez J., 1996. Dissolved solids and suspended sediment in the Rio Madeira basin, from the Bolivian Andes to the Amazon. In: D.E.Walling, B.W.Webb (eds.), Erosion and Sediment Yield: Global and Regional Perspectives. International Association of Hydrological Sciences Special Publication 236: 55–63.
- Hallet B., Hunter L., Bogen J., 1996. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global and Planetary Change 12: 213–235.
- Hewawasam T., von Blankenburg F., Schaller M., Kubik P., 2003. Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology 31: 597–600.
- Hewitt K., 2006. Disturbance regime landscapes: mountain drainage systems interrupted by large rock slides. Progress in Physical Geography 30: 365–393.
- Hicks D.M., Hill J., Shankar U., 1996. Variation of suspended sediment yields around New Zealand: the relative importance of rainfall and geology. In: D.E.Walling, B.W.Webb (eds.), Erosion and Sediment Yield: Global and Regional Perspectives. International Association of Hydrological Sciences Special Publication 236: 149–156.
- Hinderer M., 2001. Late Quaternary denudation of the Alps, valley and lake fillings and modern river loads. Geodinamica Acta 14: 231–263.
- Hurni H., Tato K., Zeleke G., 2005. The implications of changes in population, land use and land management for surface runoff in the upper Nile basin in Ethiopia. Mountain Research and Development 25: 147–154.
- Koppes M.N., Montgomery D.R., 2009. The relative efficacy of fluvial and glacial erosion over modern to orogenic time scales. Nature Geoscience 2: 644–647.
- Łajczak A., Jansson M.B.,1993. Suspended sediment yield in the Baltic drainage basin. Nordic Hydrology 24: 31–52.
- Lin Y.H., 1976. Denudation of Taiwan Island since the Pliocene Epoch. Geology 4: 105–107.
- Meybeck M., 1979. Concentration des eaux fluviales en éléments majeurs et apports en solution aux oceans. Revue de Géologie Dynamique et Géographie Physique 21: 215–246.
- Meybeck M., 1982. Carbon, nitrogen and phosphorous transport by world rivers. American Journal of Science 282: 401–450.
- Meybeck M., 2003. Global analysis of river systems: from Earth system controls to Anthropocene syndromes. Philosophical Transactions of the Royal Society of London B 358: 1935–1955.
- Montgomery D.R., 2007. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences (USA) 104: 13,268–13,272.
- Montgomery D.R., Foufoula-Georgiou E., 1993. Channel network source representation using digital elevation models. Water Resources Research 29: 3925–3934.
- Nyssen J., Poesen J., Moeyersons J., Deckers J., Haile M., Lang A., 2004. Human impact on the environment in the Ethiopian and Eritrean Highlands: a state of the art. Earth Science Reviews 64: 273–320.
- Slaymaker H.O., 1968. Patterns of erosion in instrumented catchments. Unpublished Ph.D. Thesis, University of Cambridge.
- Slaymaker O., 1972. Patterns of present subaerial erosion and landforms in mid-Wales. Transactions of the Institute of British Geographers 55: 47–68.
- Slaymaker O., 1987. Sediment and solute yields in BC and Yukon: their geomorphic significance reexamined. In: V.Gardiner (ed.), International Geomorphology, Volume 1. John Wiley and Sons, Chichester: 925–945.
- Slaymaker O., 2010. Drivers of mountain landscape change during the twenty-first century. Journal of Soils and Sediments 10: 597–610.
- Slaymaker O., 2013. Mountain environment changes in the Anthropocene epoch. Opera Corcontica 50: 107–118.
- Slaymaker O., Embleton-Hamann C., 2009. Mountains. In: O.Slaymaker, T.Spencer, C.Embleton-Hamann (eds.), Geomorphology and Global Environmental Change. Cambridge University Press, Cambridge: 37–70.
- Vanmaercke M., Poesen J., Verstraeten G., de Vente J., Ocakoglu F., 2011. Sediment yield in Europe: spatial patterns and scale dependency. Geomorphology 130: 142–161.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be566c75-0dd1-4448-9afd-bbea18dd4eb4