PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigations of cavitating flows in a Venturi tube

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents results of the experimental measurements of the cavitation phenomena in a Venturi tube with water as the working medium. Three variants of such tube were tested. Angles of converging and diverging sections are equal to 45o and 45o, 30o and 60o, 45o and 60o, respectively. In every case the throat diameter is equal to 3 mm and the throat length to 6 mm. The average flow velocity ranges from 0.1 to 0.5 m/s. During measurements, the average flow velocity, upstream and downstream pressure and water temperature were recorded. Additionally, by the use of a high-speed camera and a simple digital camera, information about the size and the shape of the bubble clouds for different flow conditions was collected. The aim of the article is data acquisition for the further numerical analyses. The experimental runs executed for this paper are to help provide more information about this type of flow, since numerical modeling of the cavitation phenomena in Venturi tubes is still very difficult and in many cases even quantitative agreement is impossible to obtain.
Słowa kluczowe
Rocznik
Tom
Strony
151--164
Opis fizyczny
Bibliogr. 23 poz., rys., tab., zdj.
Twórcy
  • Department of Mechanics and Basics of Machine Construction, Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn
autor
  • Department of Mechanics and Basics of Machine Construction, Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn
Bibliografia
  • ABDULAZIZ A. M. 2014. Performance and image analysis of a cavitating process in a small type Venturi. Experimental Thermal and Fluid Science, 53: 40-48.
  • APFEL R.E. 1972. The tensile strength of liquids. Scientific American, 227(6): 58-71.
  • ASHRAFIZADEH S.M., GHASEMMI H. 2015. Experimental and numerical investigation on the performance of small-sized cavitating Venturis. Flow Measurement and Instrumentation, 42: 6-15.
  • BAGIEŃSKI J. 1998. Kawitacja w urządzeniach wodociągowych i ciepłowniczych. Wydawnictwo Politechniki Poznańskiej, Poznań.
  • BARRE S., BOITEL G., ROLLAND J., GONCALVES E., FORTES PATELLA R. 2009. Experiments and modeling of cavitating flows in venturi: attached sheet cavitation. Europan Journal of Mechanics B/Fluids, 28(3): 444-464.
  • BAYLA A., AYDIN M.C., UNSAL M., OZKAN F. 2009. Numerical modeling of venturi flows for determining air injection rates using fluent v6.2. Mathematicaland Computational Applications, 14(2): 97-108.
  • BRINKHORST S., VON LAVANTE E., WENDT G. 2015. Numerical investigation of effects of geometry on cavitation in Herschel Venturi-tubes applied to liquid flow metering. ISFFM, Conference Paper, Arlington.
  • CHARIÈRRE B., DECAIX J., GONCALVES E. 2015. A comparative study of cavitation models in a Venturi flow. Europan Journal of Mechanics B/Fluids, 49: 287-297.
  • DECAIX J., GONCALVES E. 2013. Investigations of a three-dimensional effects on a cavitating Venturi flow. International Heat and Fluid Flow, 53: 40-48.
  • GHASSEMI H., FASIH H.F. 2011. Application of small size cavitating Venturi as flow controller and flow meter. Flow Measurement and Instrumentation, 22: 406-412.
  • HUNSAKER J.C. 1935. Progress report on cavitation research at MIT. ASME Transactions, 57(7): 423-424.
  • KNAPP R.T., DAILY J.W., HAMMIT F.G. 1970. Cavitation. McGraw-Hill, New York.
  • NOSKIEVICˇ J. 1969. Kavitace. Akademia, Praha.
  • NUMACHI F., KOBAYASCHI R. 1964. Einflus der Kavitation auf die Durchfluszahl der Venturiduse. Forsch. Ing.-Wes., 30(3): 86-93.
  • NUMACHI F., KOBAYASCHI R., KAMIYAMA S. 1962. Effect of cavitation on the accuracy of Herschel-type Venturi tubes. Trans. ASME, Series D. J. Basic Engng., 84(3): 351-362.
  • PALAU-SALVADOR G., GONZÁLEZ-ALTOZANO P., ARVIZA VALVERDE J. 2007. Numerical modeling of cavitating flows for simple geometries using FLUENT V6.1. Spanish Journal of Agricultural Research, 5(4): 460-469.
  • RANDALL L.N. 1952. Rocket applications of the cavitating Venturi. J Am Rock Soc. 22: 28-38.
  • REYNOLDS O. 1894. Experiments showing the boiling of water in an open tube at ordinary temperatures. Scientific Papers on Mechanical and Physical Subject. II. Cambridge University Press, Cambridge, 1900-1903: 578-587.
  • RODIO M.G., CONGEDO P.M. 2014. Robust analysis of cavitating flow in Venturi tube. Europan Journal of Mechanics B/Fluids, 44: 88-99.
  • SOBIESKI W. 2013. Relationships between CFD and experimental fluid mechanic. Technical Sciences, 16(3): 169-177.
  • SOBIESKI W. 2004. Stanowisko laboratoryjne do badania zjawiska kawitacji metodą wibroakustyczną. Diagnostyka, 32: 37-42.
  • SOBIESKI W. 2005. Stanowisko laboratoryjne do badania zjawiska kawitacji. V Warsztaty „Modelowanie przepływów wielofazowych w układach termochemicznych. Zaawansowane techniki pomiarowe”, Stawiska.
  • TAMHANKAR N., PANDHARE A., JOGLEKAR J., BANSODE V. 2014. Experimental and CFD analysis of flow through venturimeter to determine the coefficient of discharge. International Journal of Latest Trends in Engineering and Technology, 3(4): 194-200.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be562cba-bfa9-425c-b721-0fb69cf1789b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.