Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Analiza wytrzymałości zmęczeniowej powłok wielowarstwowych typu Cr/CrN/(CrN-Me1Me2N)multinano/(Me1Me2N-VN)multinano
Języki publikacji
Abstrakty
The article presents the results of tests of resistance to mechanical fatigue of multilayer coatings type Cr/CrN/(CrN-Me1Me2N)multinano/(Me1Me2N-VN)multinano, where metals Me1 and Me2 were chosen from Al, Cr, Ti, Zr, and Si. Multilayer coatings designed for the research were generated by the Arc Evaporation method. On the basis of the results of hardness and adhesion tests, calculations of the fatigue strength of the multilayer coatings were carried out. The obtained results showed that the chemical composition of individual component layers in the multilayer coating can be decisive in the process of creating a microstructure resistant to the fatigue cracking process.
W artykule przedstawiono wyniki badań odporności na zmęczenie mechaniczne powłok wielowarstwowych typu Cr/CrN/(CrN-Me1Me2N)multinano/(Me1Me2N-VN)multinano, gdzie metale Me1 ,Me2 dobierano spośród Al, Cr, Ti, Zr, Si. Powłoki wielowarstwowe przeznaczone do badań wytworzono metodą Arc Evaporation. Na podstawie wyników badań twardości i adhezji przeprowadzono obliczenia wytrzymałości zmęczeniowej badanych powłok wielowarstwowych. Badania wykazały, że skład chemiczny poszczególnych warstw składowych w powłoce wielowarstwowej może mieć decydujące znaczenie w procesie tworzenia się mikrostruktury odpornej na proces pękania zmęczeniowego.
Rocznik
Tom
Strony
31--38
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Łukasiewicz Research Network - Institute for Sustainable Technologies, Radom, Poland
autor
- Łukasiewicz Research Network - Institute for Sustainable Technologies, Radom, Poland
autor
- Łukasiewicz Research Network - Institute for Sustainable Technologies, Radom, Poland
autor
- Łukasiewicz Research Network - Institute for Sustainable Technologies, Radom, Poland
autor
- Institute of Metallurgy and Materials Science of Polish Academy of Sciences, Cracow, Poland
Bibliografia
- 1. Hogmmark S., Jacobson S., Larsson M.: Design and evaluation of tribological coatings. Wear, 2000, 246, pp. 20-33.
- 2. Bobzin K.: High-performance coating for cutting tools. CIRP Journal of Manufacturing Science and Technology, 2017, 18, pp. 1-9.
- 3. Hong D., Niu Y., Li H., Zhong X., Sun J.: Comparison of microstructure and tribological properties of plasma-sprayed TiN, TiC and TiB2 coatings. Surface and Coatings Technology, 2019, 374, pp. 181-188.
- 4. Hovsepian P.Eh., Luo Q., Robinson G., Pittman M., Howarth M., Doerwald D., Tietema R., Sim W.M., Deeming A., Zeus T.: TiAlN/VN superlattice structured PVD coatings: A new alternative in machining of aluminium alloys for aerospace and automotive components. Surface and Coatings Technology, 2006, 201(1-2), pp. 265-272.
- 5. Ilyuschenko A.Ph., Feldshtein E.E., Lisovskaya Y.O., Markova L.V., Andreyev M.A., Lewandowski A.: On the properties of PVD coating based on nanodiamond and molybdenum disulfide nanolayers and its efficiency when drilling of aluminum alloy. Surface and Coatings Technology, 2015, 270, pp. 190-196.
- 6. Smolik J., Walkowicz J., Tacikowski J.: Influence of the structure of the composite: “nitrided layer / PVD coating” on the durability of tools for hot-working. Surface and Coatings Technology, 2000, 125, pp. 134-140.
- 7. Persson A., Hogmark S., Bergström J.: Thermal fatigue cracking of surface engineered hot work tool steel. Surface and Coatings Technology, 2005, 191, pp. 216-227.
- 8. Xu X., Su F., Li Z.: Tribological properties of nanostructured TiAlN/W2 N multilayer coating produced by PVD. Wear, 2019, 430–431, pp. 67-75.
- 9. Li Y., Ye Q., Zhu Y., Zhang L., He Y., Zhang S., Xiu J.: Microstructure, adhesion and tribological properties ofCrN/CrTiAlSiN/WCrTiAlNmultilayer coatings deposited on nitrocarburized AISI 4140 steel. Surface and Coatings Technology, 2019, 362, pp. 27-34.
- 10. Kim Y.J., Byun T.J., Han J.G.: Bilayer period dependence of CrN/CrAlN nanoscale multilayer thin films. Superlattices and Microstructures, 2009, 45(2), pp. 73-79.
- 11. Smolik J., Zdunek K., Larisch B.: Investigation of adhesion between component layers of a multilayer coating TiC/Ti(Cx N1-x)/TiN by the scratch test method. Vacuum, 1999, 55(1), pp. 45-50.
- 12. Kim S.K., Ahn Y.H., Kim K.H.: MoS2 -Ti composite coatings on tool steel by d.c. magnetron sputtering. Surface and Coatings Technology, 2003, 169-170, pp. 428-432.
- 13. Renevier N.M., Fox V.C., Teer D.G., Hampshire J.: Coating characteristics and tribological properties of sputter-deposited MoS2 /metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating. Surface and Coatings Technology, 2000, 127(1), pp. 24-37.
- 14. Carmalt C.J., Manning T.D., Parkin I.P., Peters E.S., Hector A.L.: NbS2 thin films by atmospheric pressure chemical vapour deposition and the formation of a new 1T polytype. Thin Solid Films, 2004, 469-470, pp. 495-499.
- 15. Lewis D.B., Creasey S., Zhou Z., Forsyth J.J., Ehiasarian A.P., Hovsepian P.Eh., Luo Q., Rainforth W.M., Münz W.-D.: The effect of (Ti+Al):V ratio on the structure and oxidation behaviour of TiAlN/VN nano-scale multilayer coatings. Surface and Coating Technology, 2004, 177-178, pp. 252-259.
- 16. Arenas M.A., Ahuir-Torres J.I., García I., Carvajal H., de Damborenea J.: Tribological behaviour of laser textured Ti6Al4V alloy coated with MoS2 and graphene. Tribology International, 2018, 128, pp. 240-247.
- 17. Daniyan A.A., Umoru L.E., Popoola A.P.I., Fayomi O.S.I.: Comparative studies of microstructural, tribological and corrosion properties of Zn-TiO2 and Zn-TiO2 -WO3 nanocomposite coatings. Results in Physics, 2017, 7, pp. 3222-3229.
- 18. Mayrhofer P.H., Hovsepian P.Eh., Mitterer C., Münz W.-D.: Calorimetric evidence for frictional self-adaptation of TiAlN/VN superlattice coatings. Surface and Coatings Technology, 2004, 177-178, pp. 341-347.
- 19. Kutschej K., Mayrhofer P.H., Kathrein M., Polcik P., Mitterer C.: A new low-friction concept for Ti1−xAlx N based coatings in high-temperature applications. Surface and Coatings Technology, 2004, 188–189, pp. 358-363.
- 20. Franz R., Neidhardt J., Sartory B., Kaindl R., Tessadri R., Polcik P., Derflinger V.H.: Hightemperature low-friction properties of vanadiumalloyed AlCrN coatings. Tribology Letters, 2006, 23, pp. 101-107.
- 21. Raab R., Koller C.M., Kolozsvári S., Ramm J., Mayrhofer P.H.: Thermal stability of arc evaporated Al-Cr-O and Al-Cr-O/Al-Cr-N multilayer coatings. Surface and Coatings Technology, 2018, 25, pp. 213-221.
- 22. Zhu L-H., Song Ch., Ni W-Y., Liu Y-X.: Effect of 10% Si addition on cathodic arc evaporated TiAlSiN coatings. Transactions of Nonferrous Metals Society of China, 2016, 26(6), pp. 1638-1646.
- 23. Yildiz F., Alsaran A.: Multi-pass scratch test behavior of modified layer formed during plasma nitriding. Tribology International, 2010, 43, pp. 1472-1478.
- 24. Arslan E., Baran Ö., Efeoglu I., Totik Y.: Evaluation of adhesion and fatigue of MoS2-Nb solid-lubricant films deposited by pulsed-dc magnetron sputtering. Surface and Coatings Technology, 2008, 202, pp. 2344-2348.
- 25. Cicek H., Baran O., Keles A., Totik Y., Efeoglu I.: A comparative study of fatigue properties of TiVN and TiNbN thin films deposited on different substrates. Surface and Coatings Technology, 2017, 332, pp. 296-303.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be54c725-3083-4f65-be05-a8b9b588ecd6