Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Offshore renewable energy, and in particular the offshore wind energy sector, is still developing in many countries around the world. Wind offshore projects are characterized by the need to build offshore electric power transmission infrastructure. Offshore substations are a key element of submarine electric power transmission systems. Due to the environmental conditions, an offshore substation is constructed as an indoor facility located on a platform. Depending on the offshore wind farm capacity, there are various solutions for platform and substructure designs used for the substation. Numerous economic and technical analyses indicate a significant potential for the development of offshore wind energy in Poland. By 2030, this potential is set at 6 GW of installed capacity, taking into account 2.2 GW of power included in the connection agreements being concluded. The main objective of this paper is to present the prospects for the development of offshore wind energy in Poland, and to describe the various offshore substation solutions and the different aspects of substation operation. Offshore wind energy resources and power capacity are also presented. Moreover, solutions for offshore substation platforms, electrical equipment and layout, functions of offshore substations in the power systems and offshore substation designs are described.
Rocznik
Tom
Strony
517--528
Opis fizyczny
Bibliogr. 83 poz., rys., map., tab.
Twórcy
autor
- Electrical Power Engineering Institute, Faculty of Electrical Engineering, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
autor
- Electrical Power Engineering Institute, Faculty of Electrical Engineering, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
Bibliografia
- [1] J. Feltes, R. Hendriks, S. Stapleton, R. Voelzke, B. Lam, and N. Pfuntner, “Twixt land and sea: cost-effective grid integration of offshore wind plants”, IEEE Power and Energy Magazine 10(2), 53–61 (2012).
- [2] T. Sulawa, I. Jami, and R. Pound, “Balancing availability, reliability and future regulatory impact against overall project capex for offshore wind farms”, CIGRE/IEEE PES Joint Symposium Integration of Wide-Scale Renewable Resources Into the Power Delivery System, Canada, 1–7 (2009).
- [3] E. Topham and D. McMillan, “Sustainable decommissioning of an offshore wind farm”, Renewable Energy 102, 470–480 (2017).
- [4] N. Ederer, “Evaluating capital and operating cost efficiency of offshore wind farms: A DEA approach”, Renewable and Sustainable Energy Reviews 42, 1034–1046 (2015).
- [5] L. Grigsby, The Electric Power Engineering Handbook, 3thd ed.: CRC Press; 2012.
- [6] C. Craiga and M. Islam, “Integrated power system design for offshore energy vessels and deepwater drilling rigs”, IEEE Transactions on Industry Applications 48(4), 1251–1257 (2012).
- [7] B.K. Sovacool and P. Enevoldsen, “One style to build them all: Corporate culture and innovation in the offshore wind industry”, Energy Policy 86, 402–415 (2015).
- [8] A broad agreement for offshore wind energy. Polish Offshore Wind Energy Society (PTMEW), (http://www.ptmew.pl/posts/szerokie-porozumienie-na-rzecz-morskiej-energetyki-wiatrowej-1452.php) [in Polish].
- [9] European Commission: North Seas Energy Cooperation. (https://ec.europa.eu/energy/en/topics/infrastructure/north-seasenergy-cooperation).
- [10] S. Jacobsson and K. Karltorp, “Formation of competences to realize the potential of offshore wind Power in the European Union”, Energy Policy 44, 374–384 (2012).
- [11] P. Higgins and A. Foley, “The evolution of offshore wind power in the United Kingdom”, Renewable and Sustainable Energy Reviews 37, 599–612 (2014).
- [12] N. Hadˇzić, H. Kozmar, and M. Tomić, “Offshore renewable energy in the Adriatic Sea with respect to the Croatian 2020 energy strategy”, Renewable and Sustainable Energy Reviews 40, 597–607 (2014).
- [13] S. Rodrigues, C. Restrepo, E. Kontos, R. Teixeira, and P. Bauer, “Trends of offshore wind projects”, Renewable and Sustainable Energy Reviews 49, 1114–1135 (2015).
- [14] J.W. Bialek, “European Offshore Power Grid Demonstration Projects”, Power and Energy Society General Meeting 2012.
- [15] J. Wu, Z-X. Wang, and G-Q. Wang, “The key technologies and development of offshore wind farm in China”, Renewable and Sustainable Energy Reviews 34, 453–462 (2015).
- [16] A. Madariaga, I.M. Alegria, J.L. Martin, P. Eguia, and S. Ceballos, “Current facts about offshore wind farms”, Renewable and Sustainable Energy Reviews 16, 3105–3116 (2015).
- [17] Wind energy in Europe: Scenarios for 2030, (https://windeurope.org/wp-content/uploads/files/about-wind/reports/Windenergy-in-Europe-Scenarios-for-2030.pdf).
- [18] Developing offshore wind power in Poland. Outlook and assessment of local economic impact 2016, (http://mckinsey.pl/wp-content/uploads/2016/10/McKinsey Developing-offshore-wind-power-in-Poland fullreport.pdf).
- [19] M. Parol, S. Robak, L. Rokicki, andJ. Wasilewski, “Selected issues of cable link designing in HVAC and HVDC submarine power grids”, Int. Symp. Modern Electric Power Systems (MEPS’15) 2015.
- [20] Map of renewable energy sources, (https://www.ure.gov.pl/uremapoze/mapa.html) [in Polish].
- [21] I. Martinez, J.L. Martin, I. Kortabarria, J. Andreu, and P.I. Ereno, “Transmission alternatives for offshore electrical power”, Renewable and Sustainable Energy Reviews 5, 1027–1038 (2009).
- [22] M. De-Prada-Gil, F. D´ıaz-Gonz´alez, O. Gomis-Bellmunt, and A. Sumper, “DFIG-based offshore wind power plant connected to a single VSC-HVDC operated at variable frequency”, Energy 15, 311–322 (2015).
- [23] B. Rona and ¨O. G¨uler, “Power system integration of wind farms and analysis of grid code requirements”, Renewable and Sustainable Energy Reviews 49, 100–107 (2015).
- [24] T. Ackermann, “Transmission Systems for offshore wind farms”, IEEE Power Engineering Review 22(12), 23–27 (2002).
- [25] O. Beik and N. Schofield, “An offshore wind generation scheme with a high-voltage hybrid generator, HVDC interconnections, and transmission”, IEEE Transactions on Power Delivery 31(2), 867–877 (2016).
- [26] H. Ergun, D. Van Hertem, and R. Belmans, “Transmission system topology optimization for large-scale offshore wind integration”, IEEE Transactions on Sustainable Energy 3(4), 908–917 (2012).
- [27] S. Liu, X. Wang, L. Ning, B. Wang, M. Lu, and C. Shao, “Integrating Offshore Wind Power Via Fractional Frequency Transmission System”, IEEE Transactions on Power Delivery 33(3), 1253–1261 (2016).
- [28] P. Lakshmanan, J. Liang, and N. Jenkis, “Assessment of collection systems for HVDC connected offshore wind farms”, Electric Power Systems Research 129, 75–82 (2015).
- [29] R.L. King, Electrical Transmission Systems For Large Offshore Wind Farms, ProQuest LCC, 2011.
- [30] M. Parol, S. Robak, et al., Development of standard technical requirements for the design and construction of offshore HV substation stations with converter systems, Project ordered by PSE Innowacje S.A., 2014 [in Polish].
- [31] GWEC. Offshore wind Power. (http://gwec.net/global-figures/global-offshore).
- [32] GWEC. Global cumulative offshore wind capacity in 2016. (http://www.gwec.net/wp-content/uploads/2017/02/7 Annualand-Global-Cumulative-Offshore-wind-capacity-in-2016.jpg).
- [33] How does the offshore energy industry develop in Europe? (http://www.cire.pl/item,140648,1,0,0,0,0,0,jak-rozwijasie-morska-energetyka-wiatrowa-w-europie.html) [in Polish].
- [34] H. Janßen, T. Schr¨oder, M.L. Zettler, and F. Pollehne, “Offshore wind farms in the southwestern Baltic Sea: A model study of regional impacts on oxygen conditions”, Journal of Sea Research 95, 248–257 (2015).
- [35] I play Green. Another country has a sea wind farm in the Baltic Sea. (http://gramwzielone.pl/energia-wiatrowa/28200/kolejnykraj-ma-morska-farme-wiatrowa-na-morzu-baltyckim).
- [36] 4C Global Offshore Wind Farm Database. (http://www.4coffshore.com/offshorewind/).
- [37] G. Kullenberg and T.S. Jacobsen, “The Baltic Sea: an Outline of its Physical Oceanography”, Marine Pollution Bulletin 12(6), 183–186 (1981).
- [38] M. Hieronymus, J. Hieronymus, and L. Arneborg, “Sea level modelling in the Baltic and North Sea: The respective role of different parts of the forcing”, Ocean Modelling 118, 59–72 (2017).
- [39] H. Dabrowska, O. Kopko, K.K. Lehtonen, T. Lang, I. Waszak, N. Balode, and E. Strode, “An integrated assessment of pollution and biological effects in flounder, mussels and sediment in the southern Baltic Sea coastal area”, Environmental Science and Pollution Research 24(4), 3626–3639 (2017).
- [40] The Baltic Sea, 1st ed. Volume 30 1st Ed., Elsevier Science, 1981.
- [41] J. Zachowicz, R. Kramarska, and S. Uścinowicz, “The southern Baltic Sea – test field for international co-operation”, Przeglad Geologiczny 52, 738–734 (2004).
- [42] I. Boie, C. Femandes, P. Frias, and M. Klobasa, “Efficient strategies for the integration of renewable energy into future energy infrastructures in Europe – An analysis based on transnational modeling and case studies for nine European regions”, Energy Policy 67, 170–185 (2014).
- [43] European Comission, Renewble energy – Moving towards a low carbon economy. (https://ec.europa.eu/energy/en/topics/renewable-energy).
- [44] B. Igliński, A. Iglińska, G. Koziński, M. Skrzatek, and R. Buczkowski, “Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis”, Renewable and Sustainable Energy Reviews 64, 19–33 (2016).
- [45] Ministerstwo Energii. Polityka energetyczna. Załącznik do uchwały nr 157/2010 Rady Ministrów z dnia 29 września 2010 r. Polityka energetyczna Polski do 2030 r. (http://www.mg.gov.pl/Energetyka/Polityka+energetyczna) [in Polish].
- [46] The energy policy of Poland until 2050, (http://bip.me.gov.pl/node/24670) [in Polish].
- [47] G. Wiśniewski, K. Michałowska-Knap, and S. Koć, “Wind energy – current state and development prospects in Poland”, Instytut Energetyki Odnawialnej, (http://www.continowind.com/public/docs/Raport.pdf) [in Polish].
- [48] K. Szefler and J. Gajewski, “Areas of optimal wind farm locations in Polish maritime areas”, (http://www.psew.pl/files/microsoftpowerpoint szefler obszary.pdf) [in Polish].
- [49] P. Ciszewski, “Wyzwania w zakresie przyłączania morskich farm wiatrowych do Krajowego Systemu Przesyłowego”, (http://mailing.ztw.pl/files/Baltexpo2013/prezentacje/12 ciszewskipse presentation.pdf) [in Polish].
- [50] J. Machowski, P. Kacejko, S. Robak, P. Miller, and M. Wancerz, “Simplified angle and voltage stability criteria for power system planning based on the short-circuit power”, Int. Trans. Elect. on Electrical Energy Systems 25, 3096–3108 (2015).
- [51] S. Robak, J. Machowski, and K. Gryszpanowicz, “Contingency selection for power system stability analysis”, 18th International Scientific Conference on Electric Power Engineering (EPE), 2017.
- [52] S. Robak and K. Gryszpanowicz, “Rotor angle small signal stability assessment in transmission network expansion planning”, Elect. Power Syst. Res. 128, 144–150 (2015).
- [53] M. Witoński, “Offshore wind energy in Poland and Europe – current status and development prospects, (http://www.topkorab.org.pl/wp-content/uploads/2012/10/PTMEW-Korab2012 03mw.pdf).
- [54] J-S. Shin and J-O. Kim, “Optimal design for offshore wind farm considering inner grid layout and offshore substation location”, IEEE Transactions on Power Systems 32(3), 2041–2048 (2017).
- [55] S. Dutta and T.J. Overby, “Optimal wind farm collector system topology design considering total trenching length”, IEEE Transactions on Sustainable Energy 3(3), 339–348 (2012).
- [56] I. Erlich, F. Shewarega, C. Feltres, F.W. Koch, and J. Fortmann, “Offshore Wind Power Generation Technologies”, Proceedings of the IEEE 101(4), 891–905 (2013).
- [57] Guidelines for the design and construction of AC offshore substations for wind power plants. CIGRE TB 483 2011.
- [58] Dong Energy. Burbo Bank extension offshore wind farm.Environmental Statement Vol. 1 – Chapter 6, (https://infrastructure. planninginspectorate.gov.uk/wp-content/ipc/uploads/projects/EN010026/EN010026-000354-5.1.1.1%20Introduction.pdf).
- [59] CRIST S.A. Budowa konstrukcji offshore CRIST S.A. (http://www.ptmew.pl/conferences/20110907 OffshoreWindIndustry/16 CRIST Shipyard.pdf).
- [60] Dong Energy. Chapter 05 PROJECT DESCRIPTION Rhiannon Wind Farm, (www.dongenergy.com).
- [61] DNV. Offshore Substations for Wind Farms (https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2013-11/OS-J201.pdf).
- [62] Fowind. Supply Chain, Port Inrfastructure And Logistics Study, for offshore wind farm development in Gujarat and Tamil Nadu (http://www.gwec.net/wp-content/uploads/vip/Fowindstudy-report 29-06-2016 pages JWG-update v2.pdf).
- [63] D. Elliott, K.R.W. Bell, S.J. Finney, R. Adapa, C. Brozio, J. Yu, and K. Hussai, “A Comparison of AC and HVDC Options for the Connection of Offshore Wind Generation in Great Britain”, IEEE Transactions on Power Delivery 31(2), 798–809 (2016).
- [64] GL. Rules for the Certification and Construction, Offshore Substation (http://rules.dnvgl.com/docs/pdf/gl/maritimerules2016Jan/gl iv-7-1 e.pdf).
- [65] T. Rahman, Typical Layout of a Sub-station (http://www.slideshare.net/towfiqeee/typical-layout-of-a-substation).
- [66] Energinet.dk, Horns Rev 3 & Kriegers Flak platform interfaces (http://www.ens.dk/sites/ens.dk/files/supply/renewableenergy/wind-power/offshore-wind-power/new-offshore-windtenders/platform interfaces.pdf).
- [67] National Electricity Transmission System Security and Quality of Supply Standard (https://www.ofgem.gov.uk/).
- [68] EEP. Substation Main Functions and Classification (http://electrical-engineering-portal.com/substation-mainfunctions-and-classification).
- [69] Q. Huang, S. Jing, J. Li, D. Cai, J. Wu, and W. Zhen, “Smart substation: State of the art and future development”, IEEE Transactions on Power Delivery 32(2), 1098–1105 (2017).
- [70] Standard Functional Specification. Extra high votage substations (https://www.pse.pl/documents/20182/0fad365c-3333-4cfa-89cc-91060c23f768?safeargs=646f776e6c6f61643d74727565).
- [71] P. Hou, W. Hu, and Z. Chen, “Optimisation for offshore wind farm cable connection layout using adaptive particle swarm optimisation minimum spanning tree method”, IET Renewable Power Generation 32(2), 694–702 (2015).
- [72] E.H. Camm, M.R. Behnke, et.al. Wind power plant collector system design considerations: IEEE PES wind plant collector system design working group. Power & Energy Society General Meeting, 2009.
- [73] F. Sharkey, Dublin Institute of Technology. Offshore Electrical Networks and Grid Integration of Wave Energy Converter Arrays – Techno economic Optimisation of Array Electrical Networks, Power Quality Assessment, and Irish Market Perspectives, (https://arrow.dit.ie/engdoc/75/).
- [74] Design challenges of offshore wind support structures, (http://www.pianc-aipcn.be/figuren/5%20BTV/Donderdag/20-150507%20PIANC%20BTV%20Presentatie%20TORGUN%20-%20Design%20challenges%20v2.0.pdf).
- [75] GL. Rules for the Certification and Construction, Offshore Substation (http://rules.dnvgl.com/docs/pdf/gl/maritimerules2016Jan/gl iv-7-1 e.pdf).
- [76] DNV. Offshore Substation For Wind Farms (https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2014-10/OS-J201.pdf).
- [77] DNV. Design of offshore steel structures, general – LRFD method (https://rules.dnvgl.com/docs/pdf/dnvgl/os/2015-07/DNVGL-OS-C101.pdf).
- [78] D. Pieniazek, HV Substation Design: Applications and Considerations (http://sites.ieee.org/houston/files/2016/01/5-HV-Substation-Design-Feb-17-18.pdf).
- [79] D. Van Hertem, O. Gomis-Bellmunt, and J. Liang, HVDC Grids: For Offshore and Super grid of the Future, Wiley-IEEE Press, 2016.
- [80] J. Schlabbach and K.H. Rofalski, Power System Engineering: Planning, Design, and Operation of Power Systems and Equipment, Wiley, 2008.
- [81] P.J. Piotrowski, S. Robak, M.M. Polewaczyk, and R. Raczkowski, “Offshore Substation workers’ exposure to harmful factors – actions minimizing risk of hazards”, Medycyna pracy 67(1), 51–72 (2016).
- [82] IEEE. Std C37.122.1TM-1993 (R2008), Guide for Gas-Insulated Substations, 2008.
- [83] IEEE. Guide for the Design in Air insulated substations, 2008.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be4754b5-5637-48b1-9f17-3deacfa1a369