PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Carbon Footprint and Water Footprint of Cashmere Fabrics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ślad węglowy i ślad wodny tkanin kaszmirowych
Języki publikacji
EN
Abstrakty
EN
Given the serious problems of climate change, water shortage and water pollution, researchers have paid increasing attention to the concepts of the carbon footprint and water footprint as useful indices to quantify and evaluate the environmental impacts of the textile industry. In this study, assessment of the carbon footprints and water footprints of ten kinds of cashmere fabrics was conducted based on the PAS 2050 specification, the Water Footprint Network approach and the ISO 14046 standard. The results showed that knitted cashmere fabrics had a greater carbon footprint than woven cashmere fabrics. Contrarily, woven cashmere fabrics had a greater water footprint than knitted cashmere fabrics. The blue water footprint, grey water footprint and water scarcity footprint of combed sliver dyed woven cashmere fabric were the largest among the ten kinds of cashmere fabrics. The main pollutants that caused the grey water footprints of cashmere fabrics were total phosphorus (TP), chlorine dioxide, hexavalent chromium (Cr (VI)) and sulfide. The leading contributors to the water eutrophication footprint were total nitrogen, ammonia nitrogen, chemical oxygen demand and TP. These typical pollutants contributed 39% ~ 48%, 23% ~ 28%, 12% ~ 24% and 12% ~ 14% to each cashmere product’s water eutrophication footprint, respectively. The leading contributors to the water ecotoxicity footprint were aniline, Cr (VI) and absorbable organic halogens discharged in the dyeing and finishing process.
PL
Biorąc pod uwagę poważne problemy związane ze zmianą klimatu, niedoborem i zanieczyszczeniem wody, naukowcy zwracają coraz większą uwagę na koncepcje śladu węglowego i śladu wodnego jako użytecznych wskaźników do ilościowego określenia i oceny wpływu przemysłu włókienniczego na środowisko. W pracy dokonano oceny śladów węglowych i wodnych dziesięciu rodzajów tkanin kaszmirowych w oparciu o specyfikację PAS 2050, podejście Water Footprint Network oraz normę ISO 14046. Wyniki pokazały, że dzianiny kaszmirowe miały większy ślad węglowy, niż tkaniny kaszmirowe. Natomiast, tkaniny kaszmirowe miały większy ślad wodny niż dzianiny kaszmirowe. Ślad wody niebieskiej, ślad wody szarej i ślad niedoboru wody czesanej tkaniny kaszmirowej barwionej na kolor srebrny były największe wśród dziesięciu rodzajów tkanin kaszmirowych. Głównymi zanieczyszczeniami, które powodowały ślady szarej wody na tkaninach kaszmirowych, były fosfor całkowity (TP), dwutlenek chloru, chrom sześciowartościowy (Cr (VI)) oraz siarczki. Głównymi czynnikami przyczyniającymi się do śladu eutrofizacji wody były azot całkowity, azot amonowy, chemiczne zapotrzebowanie na tlen i TP. Te typowe zanieczyszczenia przyczyniły się odpowiednio 39% ~ 48%, 23% ~ 28%, 12% ~ 24% i 12% ~ 14% do śladu eutrofizacji wody każdego produktu z kaszmiru. Głównymi czynnikami wpływającymi na ślad ekotoksyczności wody były anilina, Cr (VI) i absorbowalne halogenki organiczne uwalniane w procesie barwienia i wykańczania.
Rocznik
Strony
94--99
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Zhejiang Sci-Tech University, School of Fashion Design & Engineering, Hangzhou, Zhejiang 310018, China
  • Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou, Zhejiang 310018, China
autor
  • Zhejiang Sci-Tech University, School of Fashion Design & Engineering, Hangzhou, Zhejiang 310018, China
autor
  • Zhejiang Sci-Tech University, School of Fashion Design & Engineering, Hangzhou, Zhejiang 310018, China
  • Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou, Zhejiang 310018, China
autor
  • Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou, Zhejiang 310018, China
  • Qingdao University, Collage of Textile & Clothing, Qingdao 266071, China
autor
  • Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou, Zhejiang 310018, China
  • Zhejiang Provincial Research Center of Clothing Engineering Technology, Hangzhou, Zhejiang 310018, China
  • Zhejiang Academy of Ecological Civilization, Hangzhou 310018, China
Bibliografia
  • 1. Ji Y, Li L. Discussion on the Status of Cashmere Spinning. Chemical Fiber & Textile Technology 2009; (2): 34-37.
  • 2. Liu CP, Xiao HF. China’s Cashmere Price in 2015 and Its Prospect for 2016. Agricultural Outlook 2016; (4): 8-10.
  • 3. Zhang ZH. Discussion on Treatment Process of Wastewater Containing Heavy Metal Chromium in Cashmere Industry. Petrochemical Industry Application 2015; 34(7): 125-127.
  • 4. Wiedmann T, Minx J. A Definition of ‘carbon footprint’. Journal of the Royal Society of Medicine 2009; 92(4): 193-195.
  • 5. Hoekstra AY, Chapagain AK, Aldaya MM, Hoekstra MMM. The Water Foote print Assessment Manual: Setting the Global Standard. London, UK, 2011.
  • 6. ISO 14046: 2014. Environmental Management-Water Footprint-Principles, Requirements and Guidelines.
  • 7. Chapagain AK, Hoekstra AY, Savenije HH, Gautam R. The Water Footprint of Cotton Consumption: an Assessment of the Impact of Worldwide Consumption of Cotton Products on the Water Resources in the Cotton Producing Countries. Ecological Economics 2006; 60(1): 186-203.
  • 8. Wang LL, Wu XY, Ding XM, Wang LH, Yu JM. Case Study on Industrial Carbon Footprint and Industrial Water Footprint of Cotton Knits. Dyeing & Finishing 2012; 38(7): 43-46.
  • 9. Dong YH, Qian JF, Xue WL. Research on Carbon Footprint of Cotton Textiles. Shanghai Textile Science & Technology 2012; 40(4): 1-2, 50.
  • 10. Chico D, Aldaya MM, Garrido A. A Water Footprint Assessment of a Pair of Jeans: the Influence of Agricultural Policies on the Sustainability of Consumer Products. Journal of Cleaner Production 2013; 57: 238-248.
  • 11. Yan Y, Jia J, Wang LH, Du C, Liu XL. The Industrial Water Footprint of Several Typical Cotton Textiles in China. Acta Ecologica Sinica 2014; 34(23): 7119-7126.
  • 12. Zhang YY, Wang W. Application and Research of Carbon Footprint Calculation in Cotton Fabric. Shandong Textile Science & Technology 2014; 55(2): 32-34.
  • 13. Li XY, Xu WJ, Zhu JZ, Yang YA. Calculation Method of Cotton Carded Yarn Carbon Footprint. Cotton Textile Technology 2014; 42(9): 19-23.
  • 14. Gao XL, Lu JQ, Zhu JZ, Wang DT. Calculation and Analysis on Overall Energy Consumption and Carbon Footprint of Cotton Fabric Product. Shanghai Textile Science & Technology 2016; 44(10): 53-54.
  • 15. Li JH, Ding XM, Wu XY. Study on Accounting and Assessment of Cotton Carbon & Water Footprint. Cotton Textile Technology 2019; 47(10): 73-77.
  • 16. Yang ZP, Zhang JC, Zhang H, Zhang XX, Gao ZQ. Assessing of Carbon Footprint of Hemp Product According to PAS2050. Journal of Textile Research 2012; 33(8): 140-144.
  • 17. Feng WY, Zhang QJ, Ding XM. Calculation of Industrial Carbon Footprint of Worsted Wool Fabric. Wool Textile Journal 2015; 43(5): 62-65.
  • 18. Ren J, Ding XM, Li F, Wu XY. Water Footprint Calculation in Different Sections of Wool Dyeing and Finishing Products. Wool Textile Journal 2019; 47(12): 23-26.
  • 19. Astudillo MF, Thalwitz G, Vollrath F. Life Cycle Assessment of Indian Silk. J. Journal of Cleaner Production 2014; 81: 158-167.
  • 20. Zhong L, Liu RA, Liu ZW, Cao L, Li YP. Water Footprint Calculation and Assessment of Textiles in Industrial Parks. Environment and Sustainable Development 2016; 41(6): 40-43.
  • 21. He WW, Li Y, Wang XP, Wang LL. Calculation and Assessment of Benchmark Water Footprint of Silk Products. Advanced Textile Technology 2018; 26(2): 41-45.
  • 22. Yang YD, He WW, Chen FL, Wang LL. Water Footprint Assessment of Silk Apparel in China. Journal of Cleaner Production 2020; 260: 121050.
  • 23. Zhao NH, Zhou X, Dong F. Carbon Footprint Assessment of Polyester Textiles. Dyeing & Finishing 2012; 38(14): 42-45.
  • 24. Zhu JX, Li Y, WangLL. Water Environmental Load Assessment of Viscose Staple Fiber Based on Water Footprint. Advanced Textile Technology 2018; 27(5): 67-72.
  • 25. Zhu JX, He WW, Li Y, Wang LL. Calculation and Assessment of Benchmark Water Footprint of Viscose Fiber. Shanghai Textile Science & Technology 2019; 47(11): 90-93.
  • 26. Zhu JX, Yang YD, Li Y, Wang LL. Water Footprint Calculation and Assessment of Viscose Textile. Industria Textile 2020; 71(1): 33-40.
  • 27. Sun LR, Tian J, Ding XM, Wu XY. Calculation of Product Water Footprint of Cashmere Knitting Goods. Wool Textile Journal 2018; 46(9): 5-7.
  • 28. Wang LL. Research and Demonstration of Carbon Footprint and Water Footprint of Textiles and Clothes. Donghua University, 2013.
  • 29. Wu M. Carbon Footprint Evaluation of Textiles and Apparel Based on Their Lifecycles. China Textile Leader 2018; (6): 26-28.
  • 30. Ridoutt BG, Pfister S. A Revised Approach to Water Footprinting to Make Transparent the Impacts of Consumption and Production on Global Freshwater Scarcity. Global Environmental Change 2010; 20(1): 113-120.
  • 31. Bai X, Hu MT, Zhu CY, Ren XJ, Pao W. Evaluation of the Water Footprint of Industrial Products Based on ISO 14046 Using Cables as an Example. Acta Ecologica Sinica 2016; 36(22): 7260-7266.
  • 32. T/CNTAC 38-2019. Technical Specification for Eco-design Product Assessment Cashmere Goods.
  • 33. GB 28937-2012. Discharge Standards of Water Pollutants for Woolen Textile Industry.
  • 34. GB 4287-2012. Discharge Standards of Water Pollutants for Dyeing and Finishing of Textile Industry.
  • 35. Liu CP, Xiao HF. Features and Trends of China’s Cashmere Production. Agricultural Outlook 2017; 13(3): 38-41.
  • 36. Ridoutt BG, Pfister S. A Revised Approach to Water Footprinting to Make Transparent The Impacts of Consumption and Production on Global Freshwater Scarcity. Global Environmental Change 2010; 20(1): 113-120.
  • 37. Heijungs RG, Guinee JB, Huppes G. Environmental Life Cycle Assessment of Products: Guide and Backgrounds. Leiden, The Netherlands, 1992.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be45ba32-7582-4aa9-95fc-a594e04fb30a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.