PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Bushell-Okrasiński inequality

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nierówność Bushella-Okrasińskiego
Języki publikacji
PL
Abstrakty
PL
W niniejszej pracy omawiamy nierówność Bushella-Okrasiego: jej historię, motywacje za nią stojące oraz kilka uogólnień. Ta nierówność pierwotnie pojawiła się w badaniach nieliniowych równań Volterry, ale bardzo szybko zdobyła zainteresowanie wielu matematyków. Podstawowy wynik został szybko uogólniony i rozszerzony w różnych kierunkach. Między innymi inni autorzy wzmocnili główną tezę, uogólnili jądro oraz nieliniowość, wyznaczyli optymalną stałą multiplikatywną, znaleźli warunki, przy których występuje równość oraz sformułowali liczne warianty ważne dla całek innych niż Lebesgue’a. Dokonujemy przeglądu wszystkich tych aspektów.
EN
We present an expository account of the Bushell-Okrasiński inequality, the motivation behind it, its history, and several generalizations. This inequality originally appeared in studies of nonlinear Volterra equations but very soon gained interest of its own. The basic result has quickly been generalized and extended in different directions strengthening the assertion, generalizing the kernel and nonlinearity, providing the optimal prefactor, finding conditions under which it becomes an equality, and formulating variations valid for other than Lebesgue integrals. We review all of these aspects.
Rocznik
Strony
3--22
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
  • Wrocław University of Science and Technology Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wybrzeże Wyspiańskiego 27, 50–370 Wrocław
Bibliografia
  • [1] M. R. Arias, R. Benítez, and V. J. Bolós. Non-Lipschitz homogeneous Volterra integral equations: theoretical aspects and numerical treatment. In Modern mathematics and mechanics, Underst. Complex Syst., pages 237–259. Springer, Cham, 2019.
  • [2] S. Barza, J. Pečarić, and L.-E. Persson. Reversed Hölder type inequalities for monotone functions of several variables. Math. Nachr., 186:67–80, 1997.
  • [3] J. Bear. Dynamics of fluids in porous media. Courier Corporation, 2013.
  • [4] R. Brooks and T. Corey. Hydraulic properties of porous media. Hydrology Papers, Colorado State University, 24:37, 1964.
  • [5] H. Brunner. Collocation methods for Volterra integral and related functional differential equations, volume 15 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2004.
  • [6] P. Bullen. Dictionary of inequalities. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, second edition, 2015.
  • [7] P. J. Bushell. On a class of Volterra and Fredholm non-linear integral equations. Math. Proc. Cambridge Philos. Soc., 79(2):329–335, 1976.
  • [8] P. J. Bushell. The Cayley-Hilbert metric and positive operators. In Proceedings of the symposium on operator theory (Athens, 1985), volume 84, pages 271–280, 1986.
  • [9] P. J. Bushell and A. Carbery. Reversed Jensen type integral inequalities for monotone functions. Math. Inequal. Appl., 4(2):189–194, 2001.
  • [10] P. J. Bushell and W. Okrasiński. Nonlinear Volterra integral equations with convolution kernel. J. London Math. Soc. (2), 41(3):503–510, 1990.
  • [11] J. Caballero and K. Sadarangani. Chebyshev inequality for Sugeno integrals. Fuzzy Sets and Systems, 161(10):1480–1487, 2010.
  • [12] B. Daraby. A convolution type inequality for pseudo-integrals. Acta Univ. Apulensis Math. Inform., 48:27–35, 2016.
  • [13] Y. V. Egorov. On the best constant in a Poincaré-Sobolev inequality. In V. M. Adamyan, I. Gohberg, M. Gorbachuk, V. Gorbachuk, M. A. Kaashoek, H. Langer, and G. Popov, editors, Differential operators and related topics, Vol. I (Odessa, 1997), volume 117 of Oper. Theory Adv. Appl., pages 101–109. Birkhäuser, Basel, 2000.
  • [14] A. Flores-Franulič and H. Román-Flores. A Chebyshev type inequality for fuzzy integrals. Appl. Math. Comput., 190(2):1178–1184, 2007.
  • [15] J. Goncerzewicz, H. Marcinkowska, W. Okrasiński, and K. Tabisz. On the percolation of water from a cylindrical reservoir into the surrounding soil. Zastos. Mat., 16(2):249–261, 1978/79.
  • [16] G. Gripenberg. Unique solutions of some Volterra integral equations. Math. Scand., 48(1):59–67, 1981.
  • [17] D. H. Hong. An improved Bushell-Okrasiński type inequality for sugeno integrals. International Journal of Fuzzy Logic and Intelligent Systems, 20(2):124–128, 2020.
  • [18] J. J. Keller. Propagation of simple non-linear waves in gas filled tubes with friction. Zeitschrift für angewandte Mathematik und Physik ZAMP, 32(2):170–181, 1981.
  • [19] J. J. Keller. Propagation of simple non-linear waves in gas filled tubes with friction. Zeitschrift für angewandte Mathematik und Physik ZAMP, 32(2):170–181, 1981.
  • [20] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo. Theory and applications of fractional differential equations, volume 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam, The Netherlands, 2006.
  • [21] J. R. King. Approximate solutions to a nonlinear diffusion equation. J. Engrg. Math., 22(1):53–72, 1988.
  • [22] B. F. Knerr. The porous medium equation in one dimension. Transactions of the American Mathematical Society, 234(2):381–415, 1977.
  • [23] S. Malamud. Some complements to the jensen and Chebyshev inequalities and a problem of W. Walter. Proceedings of the American Mathematical Society, 129(9):2671–2678, 2001.
  • [24] T. Malolepszy and J. Matkowski. On the special form of integral convolution type inequality due to Walter and Weckesser. Aequationes Math., 93(1):9–19, 2019.
  • [25] K. S. Miller and B. Ross. An introduction to the fractional calculus and fractional differential equations. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993.
  • [26] W. Mydlarczyk. The existence of nontrivial solutions of Volterra equations. Math. Scand., 68(1):83–88, 1991.
  • [27] J. J. Nieto and W. Okrasinski. Existence, uniqueness, and approximation of solutions to some nonlinear diffusion problems. J. Math. Anal. Appl., 210(1):231–240, 1997.
  • [28] W. Okrasiński. Nontrivial solutions to nonlinear Volterra integral equations. SIAM J. Math. Anal., 22(4):1007–1015, 1991.
  • [29] Ł. Płociniczak. Approximation of the Erdélyi-Kober operator with application to the time-fractional porous medium equation. SIAM J. Appl. Math., 74(4):1219–1237, 2014.
  • [30] Ł. Płociniczak. Analytical studies of a time-fractional porous medium equation. Derivation, approximation and applications. Commun. Nonlinear Sci. Numer. Simul., 24(1-3):169–183, 2015.
  • [31] C. A. Roberts. Analysis of explosion for nonlinear Volterra equations. J. Comput. Appl. Math., 97(1-2):153–166, 1998.
  • [32] C. A. Roberts and W. E. Olmstead. Growth rates for blow-up solutions of nonlinear Volterra equations. Quart. Appl. Math., 54(1):153–159, 1996.
  • [33] H. Román-Flores, A. Flores-Franulič, and Y. Chalco-Cano. A convolution type inequality for fuzzy integrals. Appl. Math. Comput., 195(1):94–99, 2008.
  • [34] H. Román-Flores, A. Flores-Franulič, Y. Chalco-Cano, and D. Ralescu. A two-dimensional Hardy type inequality for fuzzy integrals. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 21(2):165–173, 2013.
  • [35] M. Sugeno. Theory of Fuzzy Integrals and Its Applications. PhD thesis, Tokyo Institute of Technology, Tokyo Kogyo Daigaku, 1974.
  • [36] W. Walter. Problem: An integral inequality by Bushell and Okrasinski. In W. Walter, editor, General inequalities 6. 6th international conference on general inequalities, Oberwolfach, Germany, Dec. 9-15, 1990, volume 103 of ISNM, Int. Ser. Numer. Math., pages 495–496. Birkhäuser Verlag, Basel, 1992.
  • [37] W. Walter and V. Weckesser. An integral inequality of convolution type. Aequationes Math., 46(3):212–219, 1993.
  • [38] Z. Wang and G. J. Klir. Fuzzy measure theory. Springer Science & Business Media, 2013.
  • [39] E. Zeidler. Applied Functional Analysis. Main Principles and Their Applications, volume 109. Springer Science & Business Media, 2012.
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be42592b-7336-488b-9c36-88c66719bc6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.