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Abstract We present an expository account of the Bushell-Okrasiński inequality,
the motivation behind it, its history, and several generalisations. This inequality
originally appeared in studies of nonlinear Volterra equations, but very soon gained
interest of its own. The basic result has quickly been generalised and extended in
different directions, strengthening the assertion, generalising the kernel and nonlin-
earity, providing the optimal prefactor, finding conditions under which it becomes
an equality, and formulating variations valid for other than Lebesgue integrals. We
review all of these aspects.
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1. Introduction Analysis is full of integral inequalities of many types
and utility. Every young adept of the art has to learn and efficiently use results
of Cauchy, Schwarz, Hölder, Jensen, Minkowski, Young, Sobolev, Poincaré,
Friedrichs, Hardy, Chebyshev, and Opial, to name only a few classics. There
is another type of inequality that resides somewhere between Hölder’s and
Jensen’s. A result that can be thought of as a strengthening of the Chebyshev
inequality. The Bushell-Okrasiński inequality, which in one of its basic forms
for positive and increasing f , can be stated as∫ x

0
(x− s)α−1f(s)αds ≤

(∫ x

0
f(s)ds

)α

, α ≥ 1, (1)

has been discovered in 1990 by Peter Bushell and Wojciech Okrasiński and
published in their work on nonlinear Volterra integral equations [10]. The
above result has quickly been included in Bullen’s "Dictionary of Inequalities"
([6], p.35). Subsequently, many authors proceeded to investigate it further
by relaxing assumptions, strengthening the claim, finding optimal constants,
generalising to other than power-type kernels and nonlinearities, and trans-
lating it to fuzzy integrals. In this paper, we will look closely on historical
development of this inequality and review some of its generalisations.
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This review is structured as follows. First, we give some motivations be-
hind Bushell-Okrasiński inequality (we will occasionally abbreviate it as BO
inequality)and present its original proof. Then, we discuss Wolfang Walter’s
conjectures and their resolution in a joint work with Weckesser. Additionally,
we present several different generalisations of the original result. We end the
paper with a short detour into the land of fuzzy integrals, which also can
enjoy some types of Bushell-Okrasiński inequality.

2. The original Bushell-Okrasiński inequality The main motivation
behind the original Bushell-Okrasiński inequality was a study of nonlinear
Volterra equations of the form

u(x) =

∫ x

0
k(x− s)g(u(s))ds, (2)

that arise in many important applications in porous media [21, 22] or shocks
[18]. It is instructive to take a trip to the field of hydrology and see how the
above Volterra integral equation can appear as a model of moisture imbibition.
Suppose that a porous medium initially dry and half-infinite is subjected to
water at x = 0. Then, in the absence of gravity, the capillary action is the only
factor driving the evolution of the moisture θ = θ(x, t) (that is, the percentage
of representative volume filled with water). The mass conservation then leads
to the following problem for the nonlinear diffusion equation known as the
Richards equation with the diffusivity D(θ) [3],

∂θ

∂t
=

∂

∂x

(
D(θ)

∂θ

∂x

)
, x > 0, t > 0

θ(x, 0) = 0,

θ(0, t) = 1, lim
x→0+

−D(θ)
∂θ

∂x
= 0,

(3)

where for simplicity we have chosen the appropriate physical units so that the
resulting problem is nondimensional. Notice the no-flux boundary condition
that tells us that no water is being injected into the medium - capillary forces
do all the work. It is natural, both theoretically and experimentally, to look for
self-similar solutions of the above in the form θ(x, t) = v(η) with η := x/

√
t.

This gives an ordinary differential equation

−1

2
ηv′ = (D(v)v′)′, v(0) = 1, (·)′ := d

dη
. (4)

Now, we can integrate the above over [0, η] to obtain

−1

2

∫ η

0
sv′(s)ds =

1

2

(
−ηv(η) +

∫ η

0
v(s)ds

)
= D(v(η))v′(η)−D(v(0))v′(0) = D(v(η))v′(η),

‘ (5)
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where the second term on the right vanishes due to the no-flux condition.
Notice also that the term on the left-hand side was integrated by parts. Fur-
thermore, we can define the primitive of diffusivity D

G(u) :=

∫ u

0
D(s)ds, (6)

and with the help of which we have D(v)v′ = (G(v))′. Therefore, a second
integration yields

G(v(η)) =
1

2

∫ η

0
(η − 2s)v(s)ds. (7)

Finally, since D is positive, there is a well-defined inverse g = G−1. Setting
v = g(u) brings us to an equation very similar to (2). For example, weakly
singular kernels k(s) = sα−1 for some α ∈ (0, 1) can arise in the study of
anomalous diffusion [29, 30]. Different occurrences of (2) appear in shock
propagation [19] and in axisymmetric water percolation problems [15].

The flagship example of nonlinearity is the power function g(u) = u1/p

for some p > 1 that models the diffusivity of many porous media (this is
the Brooks-Correy model of moisture transport in soil [4]). As can be easily
observed, in this case the integral equation (2) has a trivial solution u ≡ 0.
More generally, for a nonlinearity satisfying g(0) = 0 the trivial solution is
always present. However, when g is non-Lipschitz then a non-trivial solution
might exist (the Lipschitz condition rules out this case). Investigating these
solutions is the main objective of Bushell’s and Okrasiński’s paper [10] as
well as several other authors throughout the last decades (for example [5, 7,
8, 16, 26, 27, 28, 31, 32]). For a thorough review of this account in view of
numerical methods, the Reader is referred to [1]. For the aforementioned root-
type nonlinearity g(u) = u1/p one can easily verify that a non-trivial solution
of (2) with a kernel k(s) = sα−1 and some α > 0 is the power function

u(x) = x
αp
p−1B

(
α, 1 +

α

p− 1

) p
p−1

, (8)

where B(·, ·) is the Euler beta function. There are many approaches that
find the necessary and sufficient conditions on k and g for which (2) has
non-trivial solutions and reviewing all of them would take us too far from
the main theme of this paper. However, we briefly note that Bushell’s and
Okrasiński’s approach is to use the monotone iteration method with sub-
and supersolutions defined in functional cones (see, for example, [39]). In the
main argument, the authors construct an explicit solution of the following
associated integral equation

w(x) =

∫ x

0
g(w(s)α)

1
αds, (9)
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and show that it can exist if and only if 1 ≤ α < αc for some critical value
αc. This assertion is then carried over to the case of (2) and the crucial
link between these two nonlinear Volterra equations is supplemented by the
Bushell-Okrasiński inequality.

In many talks between the author and W. Okrasiński he always stressed
that the inequality was just a "passing auxiliary lemma" needed to show nec-
essary conditions for existence. Originally, W. Okrasiński did not realise that
it can have a value of its own. This is probably the reason that he together
with P. Bushell did not try to polish the result and provide a stronger asser-
tion. This was later done by other authors and, to some extent, by Bushell,
to which we will turn in next sections. Now, we present the original proof of
Bushell-Okrasiński inequality1

Theorem 2.1 (The original BO inequality, Lemma 2 in [10]) Let f ∈
C[0, X], X > 0, be a non-decreasing and non-negative function. If α ≥ 1, then∫ x

0
(x− s)α−1f(s)ds ≤

(∫ x

0
f(s)

1
αds

)α

. (10)

Proof Our aim is to show (10) first for natural α by mathematical induction,
then by Hölder inequality extend the result to all rational numbers, and finally
by density argument arrive at α real. Fix f as in the assumptions and define
for n ∈ N let

In(x) :=

(∫ x

0
f(s)ds

)n

− n

∫ x

0
(x− s)n−1f(s)nds. (11)

We can compute the derivative of the above quantity

I ′n(x) = nf(x)

(∫ x

0
f(s)ds

)n−1

− n(n− 1)

∫ x

0
(x− s)n−2f(s)nds

= nf(x)In−1(x) + n(n− 1)

∫ x

0
(f(x)− f(s)) (x− s)n−2f(s)n−1ds,

(12)

which is valid for all n ≥ 1. For n = 1, we trivially have I1(x) = 0, while for
the next step,

I ′2(x) = 2

∫ x

0
(f(x)− f(s)) f(s)ds ≥ 0, (13)

because f is non-decreasing. Therefore, I2(x) ≥ I2(0) = 0. Now, we assume
that In−1(x) ≥ 0 for n > 2. We immediately have In(x) ≥ 0 since manifestly

1In this review we will state all important results as "Theorems" in contrast, for example,
with [10] where the BO inequality is designated as "Lemma".
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I ′n(x) ≥ 0 due to inductive assumption and non-decreasing of f . Therefore,
In(x) ≥ 0 for all n ∈ R, that is,

n

∫ x

0
(x− s)n−1f(s)nds ≤

(∫ x

0
f(s)ds

)n

, (14)

which implies (10) for α = n with f replaced by f1/n which is also positive
and non-decreasing.

Now, fix p > 1 and take the conjugate exponent q−1 = 1−p−1. By Hölder
inequality we have∫ x

0
(x− s)

n−1
p f(s)

n
p f(s)

1
q ≤

(∫ x

0
(x− s)n−1f(s)nds

) 1
p
(∫ x

0
f(s)ds

) 1
q

.

(15)
If we now put α = 1 + (n − 1)/p, due to the arbitrariness of p, we obtain
(10) for any α ∈ Q. From the density of rational numbers in R we obtain the
Bushell-Okrasiński inequality for all real α ≥ 1. This concludes the proof. ■

Remark 2.1 The original result, that is, Lemma 2 in [10] also contains the
following inequality(

β − α

β − 1

)β−1(∫ x

0
f(s)

1
β ds

)β

≤
∫ x

0
(x− s)α−1f(s)ds, 0 < x ≤ 1, (16)

for β > α without the requirement on f to be non-decreasing. However, the
proof is a simple consequence of Hölder’s inequality and thus we omit it here.
This justifies the claim that (10) is a reverse Hölder type inequality (see [2]).

We close this section with some remarks concerning nonlocal operators, in
particular fractional integrals. For a comprehensive treatment of this subject,
the reader is invited to consult [20]. The notion of generalising derivatives
to not necessarily integer order has been present in mathematics since the
beginning of the calculus itself (an interesting historical account can be found
in [25]). Many different approaches have been employed and culminated in
the definition of the Riemann-Liouville fractional integral and derivative.

Definition 2.2 The Riemann-Liouville fractional integral of order α > 0
of a locally integrable function f : [0, X] 7→ R is given by

Iαa f(x) =


1

Γ(α)

∫ x
a (x− s)α−1f(s)ds, α > 0

f(x), α = 0.
x ≥ a. (17)

Moreover, let α > 0 and n = ⌈α⌉ = min {m ∈ N : m ≥ n} (⌈·⌉ is the ceiling
function). Then Riemann-Liouville fractional derivative of order α is defined
by

Dα
a f(x) =

dn

dxn
In−α
a f(x), x ≥ a. (18)
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We immediately can notice the similarity of the fractional integral and the
left-hand side of Bushell-Okrasiński inequality. Fix p ≥ 1 and let q = αp > 1
along with the conjugate exponent q−1+ q′−1 = 1. Then, from (10) we obtain
for 0 < x ≤ X ≤ 1 and f positive non-decreasing,

Iα0 f(x) ≤
1

Γ(α)

(∫ x

0
f(s)

1
αds

)α

≤ 1

Γ(α)

(∫ 1

0
f(s)

q
αds

)α
q
(∫ 1

0
1q

′
ds

) 1
q′

=
1

Γ(α)

(∫ 1

0
f(s)pds

) 1
p

, 1 ≤ p ≤ ∞,

(19)

which follows from Hölder’s inequality. Therefore, Bushell-Okrasiński inequal-
ity implies that the fractional integral is a bounded linear operator for such
functions (for a general Lp(0, 1) space, see [20], Lemma 2.1). In fact, we will
see below in (20) that the optimal constant in the bound is equal to 1/Γ(1+α).

3. Improvements and generalisations

3.1. Walter’s conjectures As we have mentioned above, authors of the
original 1990 paper [10] treated the Bushell-Okrasiński inequality as a side
lemma that was needed to investigate the nontrivial solutions of the nonlinear
Volterra integral equation (2). Very soon, in fact, almost immediately after
the publication, the inequality gained some attention in the mathematical
community. In December 1990 during the 6th International Conference on
General Inequalities in Oberwolfach, Germany, Wolfgang Walter posed two
conjectures related to strengthening of the original inequality (the proceedings
[36] appeared in 1992). The first one is based on the observation that in the
original proof a stronger result is obtained for α ∈ N as in (14) where the
factor n appears on the left-hand side. Then, in the proof for α ∈ Q this fact is
used only partially, and the stronger inequality is lost. Walter asked whether
it is possible to find a simpler proof of the Bushell-Okrasinski inequality with
the improved assertion that for all α ≥ 1 we have

α

∫ x

0
(x− s)α−1f(s)αds ≤

(∫ x

0
f(s)ds

)α

. (20)

It is also natural to ask whether the above is satisfied for 0 < α < 1 provided
that the function f is nonnegative and decreasing. Furthermore, the question
arises of whether the assumption that f is defined in an interval [0, X] with
X ≤ 1 is necessary at all. All of these claims have been successfully proved in
a joint paper with V. Weckesser published in 1993 (the paper was submitted
in November 1991 and revised in August 1992). In fact these authors proved
a much more general result with a proof that is based on approximations by
step functions and Monotone Convergence Theorem.
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Theorem 3.1 (Generalized BO inequality, Theorem 1 in [37]) Suppose
that f : [0, X] 7→ [0,∞) for X > 0, g : [0,∞) 7→ [0,∞), and k ∈ L1[0, X].
Define

K(x) :=

∫ x

0
k(s)ds, hc(y) := g(cy)−K(c)g(y), (21)

for 0 < c ≤ X. Then, if either

f is non-decreasing, g is convex, hc is nonnegative and non-decreasing,
(I)

or

f is non-increasing, g is concave, hc is nonnegative and non-increasing,
(II)

the following generalized Bushell-Okrasiński inequality is satisfied∫ x

0
k(x− s)g(f(s))ds ≤ g

(∫ x

0
f(s)ds

)
, 0 < x ≤ X. (22)

Before we proceed to the proof, we relate the original Walter’s conjectures
to the above theorem.

Corollary 3.2 The inequality (20) is satisfied for all 0 < x ≤ X with an
arbitrary X > 0 when

• f : [0, X] 7→ [0,∞) is non-decreasing and α ≥ 1, or

• f : [0, X] 7→ [0,∞) is non-increasing and 0 < α ≤ 1.

Proof We have k(x) = αxα−1 and therefore K(x) = xα. Further, g(y) = yα

and thus for 0 < c ≤ X we have

hc(y) = g(cy)−K(c)g(y) = (cy)α − cαyα = 0, (23)

and the condition for hc is satisfied both in (I) and (II). Since the power
function g is concave for 0 < α ≤ 1 and convex for α ≥ 1 the proof is
completed using Theorem 3.1. ■

We can now proceed to the proof of Walter and Weckesser’s result.

Proof (of Theorem 3.1). We will focus only on (I) case; the proof of the
other is similar. Due to Beppo Levi’s Theorem of Monotone Convergence, it
is sufficient to consider (22) for f which are step functions

f(x) =

n−1∑
i=1

aiχ[xi−1,xi)(x) + anχ[xn−1,xn](x), (24)

for a partition
0 = x0 < x1 < x2 < ... < xn = x, (25)
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where χA is a characteristic function of a measurable set A. If the integral on
the left in (22) is denoted by Ln, a simple calculation gives

Ln =

n∑
i=1

(K(x− xi−1)−K(x− xi)) g(ai). (26)

Similarly,

In :=

∫ x

0
f(s)ds =

n∑
i=1

ai(xi − xi−1), (27)

hence, the right-hand side of (22), denoted by Rn, satisfies Rn = g(In). Now,
notice that for n = 1, that is, for constant functions, we have x1 = x, and

L1 −R1 = g(a1) (K(x)−K(0))− g(a1x) = ha1(x) ≥ 0, (28)

by the assumption on hc. We can now utilise mathematical induction. Assume
that Ln ≤ Rn. We claim then that this inequality holds for n + 1. Without
any loss of generality, we can assume that the n+1-th step of the function f
can arise as a partition of the interval [xn−1, xn]. Pick any 0 < c < xn−xn−1

and y ≥ 0. Now, the update to the non-decreasing step function f is given by

f(x) =
n−1∑
i=1

aiχ[xi−1,xi)(x) + anχ[xn−1,xn−c) + (an + y)χ[xn−c,xn]. (29)

It is now straightforward to calculate the relevant integrals. It follows that
only the last interval makes the difference, that is, since we still have xn = x,
and

∆Ln+1 : = Ln+1 − Ln = (g(an + y)− g(an))

∫ x

x−c
k(x− s)ds

= (g(an + y)− g(an))K(c).

(30)

Similarly,
∆Rn+1 := Rn+1 −Rn = g(In + cy)− g(In). (31)

Since g is convex and trivially anc ≤ In we have further ∆Rn+1 ≤ g(c(an +
y))− g(can). Next, by the fact that hc is non-decreasing

∆Ln+1 −∆Rn+1 ≤ (g(an + y)− g(an))K(c)− g(c(an + y)) + g(can)

= hc(an)− hc(an + y) ≤ 0.
(32)

Therefore, by the inductive assumption that Ln ≤ Rn we have Ln+1 = Ln +
∆Ln+1 ≤ Rn +∆Rn+1 = Rn+1 and the proof is complete. ■

As we have seen, the proof of Walter and Weckesser is of a completely
different nature than Bushell and Okrasiński’s. It can be regarded as elemen-
tary, which allows for a substantial improvement of the claim. We have seen
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in the above corollary that taking K and g as power functions, the general
inequality (22) reduces to the stronger version of the original (20). Quite re-
cently, T. Małolepszy and J. Matkowski, asked a somewhat reverse question:
is this the only choice that yields Bushell-Okrasiński inequality? (see [24]).
They show several results concerning that topic. One of which states that
assuming X > 1, (I), and K(x) = xα, the only choice for the other function
is very restricted, that is g(y) = g(1)yα or g ≡ 0 for α ≥ 1. Interestingly, for
0 < α < 1, the only option allowed is a trivial g.

3.2. Equality in (14) Having an inequality of the type (20) there nat-
urally arises a question about its sharpness. This can be answered quickly
positively by taking a constant function f for which the inequality becomes
an equality. But is this the only case where it occurs? It was shown in [37]
that (notice that here x = 1)

α

∫ 1

0
(1− t)α−1f(t)dt =

∫ 1

0
f(t)dt ⇐⇒ f ≡ const. (33)

Encouraged by this example, W. Walter asked whether the same conclusion
holds true for the Bushell-Okrasiński inequality

α

∫ 1

0
(1− t)α−1f(t)αdt =

(∫ 1

0
f(t)dt

)α

⇐⇒ f ≡ const. (34)

It is relatively easy to prove that an equality in (14) occurs only for constant
f when α ∈ N. The proof follows the same route as the original one by Bushell
and Okrasiński for their inequality. One has just to inductively verify condi-
tions for which In defined in (11) is equal to 0. This method was generalised
to P. Bushell and A. Carbery in [9]. They have proved that the equality in
(14) for all α ≥ 1 (in fact, in some generalised version of it) occurs only if for
some 0 ≤ x0 < X we have

f(x) =

{
0, 0 < x ≤ x0,

C, x0 < x ≤ X,
(35)

where C > 0 is a constant. This solves the open problem posed by Walter.

3.3. Reversed Jensen type inequalities In subsequent years follow-
ing [10] and [36] several other generalisations and improvements of Bushell-
Okrasiński inequality appeared in the literature. For example, Y. Egorov in
2000 gave another elementary functional-analytic proof of Walter’s conjecture
[13] in the case of continuous functions for a slightly stronger inequality as
in (14). P. Bushell himself went further into the direction of investigating the
reversed Jensen inequality. In a paper with A. Carbery [9] they stated the
following result (actually, they have proved a much general inequality). The
proof is different from Walter and Weckesser’s and in the following we present
its key features.
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Theorem 3.3 (Corollary 2 in [9]) Let f be non-decreasing, positive func-
tion on [0, X] and g : [0,∞) → [0,∞) be a convex function with g(0) = 0.
For any positive and integrable function k define

K(x) =

∫ x

0
k(s)ds, 0 < x ≤ X. (36)

Further, suppose that

g
(y
c

)
K(cx) ≤ g(y)K(x), 0 < x < X, y > 0, 0 < c < 1. (37)

Then,∫ x

0
k(x− s)g(f(s))ds ≤ K(x)g

(
1

x

∫ x

0
f(s)ds

)
, 0 < x ≤ X. (38)

Proof Fix x ∈ (0, X]. After substitution x → s − x the inequality (38)
becomes ∫ x

0
k(s)g(f(x− s))ds ≤ K(x)g

(
1

x

∫ x

0
f(x− s)ds

)
, (39)

Since the function [0, x] ∋ s → x− s ∈ [0, x] is decreasing, so is the function
[0, x] ∋ s → f(x− s). Therefore, we can put w(s) := f(x− s), which renders
our claimed inequality as∫ x

0
k(s)g(w(s))ds ≤ K(x)g

(
1

x

∫ x

0
w(s)ds

)
, (40)

where the function w = w(x) is non-increasing and positive. Now we define
an auxiliary function h = h(x) such that

h(x) :=
1

x

∫ x

0
w(s)ds ≥ w(x) > 0, (41)

and h(0) = w(0).
Take any ϵ > 0 and use (37) with c = y/(y + ϵ) to obtain

g(y + ϵ)K

(
xy

y + ϵ

)
≤ g(y)K(x). (42)

By subtracting from (37) we arrive at the following

(g(y + ϵ)− g(y))K

(
xy

y + ϵ

)
≤ g(y)

(
K(x)−K

(
x− x

y + ϵ
ϵ

))
, (43)

since every convex function is differentiable y-a.e. we can divide by ϵ and pass
to the limit, obtaining

yg′(y)K(x) ≤ xg(y)k(x), (44)
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since, by definition, K ′(x) = k(x). Then, if we define

∆(x) = xg(h(x))k(x)− h(x)g′(h(x))K(x), (45)

and
φ(x) = K(x)g(h(x))−

∫ x

0
k(s)g(w(s))ds, (46)

a straightforward computation yields φ(0) = 0, and

φ′(x) = k(x)f(x)

(
g(h(x))

h(x)
− g(w(x))

w(x)

)
+

∆(x)

xh(x)
(h(x)− w(x)) . (47)

From here and from the definition of h(x) we can also observe that φ′(0) = 0
since the first term in the above vanishes due to continuity of g while for the
second we have

lim
x→0

∆(x)

x
= lim

x→0

(
g(h(x))k(x)− h(x)g′(h(x))

K(x)

x

)
= g(w(0))k(0)− w(0)g′(w(0)) lim

x→0

1

x

∫ x

0
k(s)ds

= g(w(0))k(0)− w(0)g′(w(0))k(0).

(48)

Hence, ∆(x)/x is bounded, and the second term in (47) vanishes when x → 0.
Therefore, φ′(0) = 0.

Furthermore, from (44) we have that ∆(x) ≥ 0 and hence the second
term in (47) is non-negative. On the other hand, the function g(y)/y is non-
decreasing due to convexity of g, as can be verified by computing derivatives.
From this we conclude that φ(x) ≥ 0 which immediately proves that∫ x

0
k(s)g(w(s))ds ≤ K(x)g(h(x)), (49)

which is (40). By the definition of w, this inequality is equivalent to (38). The
proof is complete. ■

There is an interesting corollary of this. Taking g(y) = yα and K(x) = xβ

with 1 ≤ α ≤ β yields

β

∫ x

0
(x− s)β−1f(s)αds ≤ xβ−α

(∫ x

0
f(s)ds

)α

, 0 < x ≤ 1 (50)

which is the "β-generalization" of the Bushell-Okrasiński inequality. Note that
Walter and Weckesser’s result (22) would give a weaker inequality, lacking the
xβ−α factor on the right-hand side.

Another interesting approach to generalisation of (14) was given by S. M.
Malamud in 2001 (see [23]). The author observed that the Bushell-Okrasiński
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inequality is a strengthening of the classical Chebyshev’s result2 for increasing
f ≥ 0

α

∫ 1

0
(1−s)α−1f(s)αds ≤

(
α

∫ 1

0
(1− s)α−1ds

)(∫ 1

0
f(s)αds

)
=

∫ 1

0
f(s)αds.

(51)
The point is that by Hölder’s inequality we always have

∫ 1
0 fαds ≥ (

∫ 1
0 fds)α.

Malamud proved the following general result∫ 1

0
g(f(s))w(s)dΦ(s)∫ 1

0
w(s)dΦ(s)

≤ g


∫ 1

0
f(s)w(s)ds∫ 1

0
w(s)ds

 , (52)

when w is the weight and there are certain restrictions placed on g and Φ.
The above reduces to the Bushell-Okrasiński inequality for g(x) = xα, Φ(x) =
1 − (1 − x)α, and w ≡ 1. Moreover, it can also be thought of as an inverse
to Jensen’s inequality. Similarly to Walter and Weckesser’s result, the proof
proceeds by approximation of step functions. Also, the question of whether the
equality in the above occurs only for constant functions remains unanswered.
For simplicity, we will consider only the unweighted case, that is, w ≡ 1. The
general inequality can be proved by the technique of approximation with step
functions, however, the proof is more involved and the assumptions are more
restrictive.

Theorem 3.4 (Theorem 2.1 in [23]) Suppose that f is a positive non-
decreasing function, Φ is a positive function of bounded variation equal to 1,
and g is positive, non-decreasing, convex, and differentiable function. Then,
provided that

g′(y)
Φ(1)− Φ(x)

1− x
≤ g′(y(1− x)), 0 < x < 1, 0 < λ < ∞, (53)

we have ∫ 1

0
g(f(s))dΦ(s) ≤ g

(∫ 1

0
f(s)ds

)
. (54)

Proof Without the loss of generality we approximate the monotone function
by an increasing sequence of step-functions

fn(x) =

n∑
i=1

aiχ( i−1
n

, i
n
)(x). (55)

2Here, we mean the Chebyshev inequality for positive increasing f and positive decreas-
ing g:

∫ 1

0
f(x)g(x)dx ≤

(∫ 1

0
f(x)dx

)(∫ 1

0
g(x)dx

)
.
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For this choice, the inequality simply becomes

n∑
i=1

g(ai)

(
Φ

(
i

n

)
− Φ

(
i− 1

n

))
≤ g

(
1

n

n∑
i=1

ai

)
. (56)

Next, we introduce φ as the difference between the left and right-hand side
of the above as a function of the largest value of f , that is,

φ(y) : = g

(
y

n
+

1

n

n−1∑
i=1

ai

)
− g(y) (Φ (1)

−Φ

(
n− 17130

n

))
−

n−1∑
i=1

g(ai)

(
Φ

(
i

n

)
− Φ

(
i− 1

n

))
.

(57)

Then, taking the derivative gives

φ′(y) =
1

n
g′

(
y

n
+

1

n

n−1∑
i=1

ai

)
− g′(y)

(
Φ (1)− Φ

(
n− 1

n

))
≥ 1

n
g′
(
y

(
1− n− 1

n

))
− g′(y)

(
Φ (1)− Φ

(
n− 1

n

))
,

(58)

since g is convex. Furthermore, by our assumption (53) we conclude that
φ′(y) ≥ 0. Therefore, φ increases and we can consider (56) for the worst case,
that is, for an = an−1 (since by assumption we always have an ≥ an−1).
But then, by redefining the function φ for x = an−1 we reduce the inequal-
ity to the case where gn−1 = gn−2. Continue in this way yields the obvious∑n

i=1 (Φ(i/n)− Φ((i− 1)/n)) = 1. The general case follows from the Mono-
tone Convergence Theorem. ■

We can note how the Malamud’s result (54) corresponds to Walter and
Weckesser’s result (22). Recall the definition of the function hc(y) in (21). If we
assume that it is differentiable, then it is non-decreasing when h′c(y) ≥ 0. But
this requirement is exactly the same as (53) with c = 1−x and k(t) = Φ′(1−t)
provided the latter derivative exists. Therefore, we can think that Walter and
Weckesser’s result requires less regularity than Malamud’s for the generalised
Bushell-Okrasiński inequality to hold. Note, however, that (52) is more gen-
eral than (22).

We end this section by mentioning some other approaches to generalising
Bushell-Okrasiński inequality. In 1995 H. Heinig and L. Maligranda proved
that for f , Φ positive and non-decreasing with lim

s→a+
Φ(s) = 0 it holds that

∫ b

a
f(b− s)αd (Φ(s))α

(
≤
∫ b

a
f(b− s)dΦ(s)

)α

, α ≥ 1, (59)
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which is (14) for Φ(s) = s, a = 0, and b = x. Note that Malamud’s inequality
(54) includes this case, since (53) is satisfied since g(s) = sα is convex. Further
generalisations have been given in [2].

4. Bushell-Okrasiński inequality for fuzzy integrals Lately, a num-
ber of researchers have initiated the programme of extending the Bushell-
Okrasiński inequality onto some other than Lebesgue types of integrals. In
2008 a Sugeno type fuzzy integral has been considered by H. Román-Flores,
A. Flores-Franulič, and Y. Chalco-Cano [33]. In order to present this interest-
ing result first we have to introduce some concepts concerning fuzzy measures
(for a comprehensive treatment, see [38]).

Definition 4.1 Let Σ be the σ-algebra of subsets of R. Then, a function
µ : Σ 7→ [0,∞] is a fuzzy measure if

• µ(∅) = 0,

• it is monotone,

• it is continuous from above and below.

In particular, the difference with the classical measure is the fact that in
the fuzzy setting, we relax the requirement of additivity in favour of mono-
tonicity from both sides. If f is a non-negative real-valued function we define
its α-level set by {f > α} := {x ∈ R : f(x) > α} with α > 0. Moreover, if µ
is a fuzzy measure we define

F(R) := {f : R 7→ [0,∞) : f is measurable} (60)

This lets us define the Sugeno fuzzy integral.

Definition 4.2 (Sugeno integral [35]) Let µ be the fuzzy measure on
(Σ,R). For f ∈ F and A ∈ Σ the Sugeno integral (or fuzzy integral) is defined
as

−
∫
A
fdµ = sup

α≥0
[min (α, µ(A ∩ {f ≥ α}))] (61)

It is interesting to observe that Sugeno integrals do not enjoy some properties
of the Lebesgue integrals. For example, they are not linear operators. How-
ever, many types of inequalities can also be proved for Sugeno integrals. For
example, A. Flores-Franulič and H. Román-Flores [14] showed the following
Chebyshev inequality for strictly increasing continuous functions

−
∫ 1

0
fgdµ ≥

(
−
∫ 1

0
fdµ

)(
−
∫ 1

0
gdµ

)
, (62)
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where µ is the Lebesgue measure. In similar spirit, K. Sadarangani and J.
Caballero [11] proved the following type of Chebyshev inequality for Sugeno
integrals

µ (x ∈ A : f(x) > α) ≤ 1

α2
−
∫
A
f2dµ, 0 < α ≤ 1, (63)

for µ : σ 7→ [0, 1] being a fuzzy measure and positive f ∈ F . It is important
to note that the above inequality is valid if and only if 0 < α ≤ 1. The
proof is a of completely different nature than in the Lebesgue case, since one
cannot utilise the linearity of the integral operator. The Bushell-Okrasiński
type inequality is also valid for Sugeno integrals. In [33] authors showed that
for positive, continuous, and increasing functions f we have

α−
∫ 1

0
sα−1f(s)αds ≥

(
−
∫ 1

0
f(s)ds

)α

, α ≥ 2. (64)

The proof starts with the aforementioned fuzzy Chebyshev inequality and
utilises a number of techniques from fuzzy measure theory. We omit it because
it is out of the scope of our review. Note that the above is valid for α ≥ 2
and, surprisingly, the inequality is reversed, in contrast with the result for
Lebesgue integrals. However, as was shown recently by D. Hong in 2020, the
above formulation of the inequality is not optimal [17]. Instead, with the
above assumptions, we have the following(

−
∫ 1

0
sα−1ds

)−1

−
∫ 1

0
sα−1f(s)αds ≥

(
−
∫ 1

0
f(s)ds

)α

, α ≥ 1, (65)

where now we allow for the whole range of α. Notice the constant in parenthe-
ses above. For the Lebesgue integral, it would equal α. However, as noted in
[17], for the Sugeno case, it is always smaller or equal to it (for example, when
α = 3 it equals 2.618). Hong also gives some useful estimates of this prefac-
tor. Notice a completely different behaviour of the Sugeno integral compared
with the Labesgue case. For a literature concerning different inequalities for
Sugeno integrals, the reader is referred to [34].

Apart from Sugeno integrals, various generalisations of the concept of in-
tegration have been proposed, analysed, and applied. Reviewing these would
take us too far from the main topic of our short exposition. Some of these
generalisations posses their own Bushell-Okrasiński type inequalities. For in-
stance, pseudo-integrals for which, loosely speaking, instead of the field of real
numbers one considers a semi-ring defined on a real interval, exhibit a version
of (14) with redefined multiplication and addition [12]. Notice how different
various properties of these integrals might be from the Lebesgue case (like
the loss of linearity). But nevertheless, Bushell-Okrasiński inequality (or its
variants) remains valid. This strengthens its universal character.

5. Conclusion The Bushell-Okrasiński inequality is a little mathemat-
ical gem discovered when studying nonlinear integral equations. The wide
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array of different possible extensions and generalisations indicates that it is
a fundamental relation in mathematical analysis. It waited to be found until
almost the end of the twentieth century, but now sits comfortably within the
collection of its older siblings - Chebyshev, Hölder, and Jensen inequalities.
Acknowledgments: The author would like to thank Prof. David Edmunds for his invalu-
able comments and remarks on the manuscript.
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Nierówność Bushella-Okrasińskiego
Ł. Płociniczak

Streszczenie W niniejszej pracy omawiamy nierówność Bushella-Okrasiego: jej hi-
storię, motywacje za nią stojące oraz kilka uogólnień. Ta nierówność pierwotnie
pojawiła się w badaniach nieliniowych równań Volterry, ale bardzo szybko zdo-
była zainteresowanie wielu matematyków. Podstawowy wynik został szybko uogól-
niony i rozszerzony w różnych kierunkach. Między innymi inni autorzy wzmocnili
główną tezę, uogólnili jądro oraz nieliniowość, wyznaczyli optymalną stałą multipli-
katywną, znaleźli warunki, przy których występuje równość oraz sformułowali liczne
warianty ważne dla całek innych niż Lebesgue’a. Dokonujemy przeglądu wszystkich
tych aspektów.

Klasyfikacja tematyczna AMS (2010): 26D15, 45D05.

Słowa kluczowe: nierówność Bushella-Okrasińskiego, odwrotna nierówność Jensena,
nieliniowe równania Volterry.
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