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CHATTER IN CUTTING PROCESSES 

Vibrations during a cuttting process are analysed by means of a frictional and a regenerative model. For this 
purpose a new model which contains a nonlinear friction force, defined by Rayleigh’s self-excitation, is 
developed. Then a one degree of freedom model is examined using analytical and numerical methods. The 
regenerative model of cutting is separately examined in order to emphasize differences between frictional and 
regenerative models. Next, a mutual interaction of frictional and regenerative effects is discussed and their 
influence on process stability is shown. Finally, a two degree of freedom frictional model with an extra 
centrifugal force is investigated. Various kinds of behaviour, from regular to chaotic are shown. 

1. INTRODUCTION 

The cutting process is still one of the most popular and important machining processes 
from a technological point of view. The variety of materials and cutting methods speaks 
volumes for the usefulness of cutting processes in the present world. This variety involves 
some difficulties especially when high productivity and surface quality is demanded. One  
of the most frequent causes for deteriorating cutting conditions are vibrations between the 
tool and the workpiece, which may also decrease quality of the product and lead to faster 
tool wear. A fundamental reason for an appearance of vibrations called chatter is the 
complexity of the chip-formation process. There are four kinds of chatter mechanism: (a) 
dry friction effect, (b) regenerative effect, (c) mode coupling, (d) external excitation. In 
some papers, thermal chatter is also distinguished. Dry friction and regenerative effects are 
the most important, widely widespread and principal influences on the process. The former 
is typical for conventional cutting where vibrations are caused by a nonlinear dry friction 
force. Regenerative chatter is produced by workpiece geometry from the previous pass. That 
is typical for high speed machining (HSM). HSM is said to be High Cutting Speed (vc), 
High Spindle Speed (n), High Feed-rate (vf) and Highly Productive Machining. 

 The first meaningful papers treating dynamics of the cutting process were published at 
the beginning of last century [11],[13],[21]. Further research improved knowledge and 
provided more experience from investigations but the next key development in this field 
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appeared when chaotic behaviour was found [4],[5]. This work opened new horizons and 
gave new opportunities for researchers. From this time there are a number of  papers which  
model the cutting process as a one, two or sometimes three degree of freedom system but 
always a cutting force is essential for explaining a phenomenon. Different papers show 
models of the cutting process in which nonlinearity of cutting forces are of significant 
importance. Very often the force depends on an axial width of cut, a chip thickness or on 
cutting speed. The nonlinearity of cutting force can explain Hopf bifurcation and other 
nonlinear phenomena which often exist. On the other hand, a tool losing contact with a 
workpiece causes nonlinear behaviour as well, including chaos. This kind of non-continuity 
is discussed in [26] and additionally, stochastic properties of a workpiece material are 
introduced. Stochastic dynamics of a metal cutting process is also examined in [6]. System 
instability can also be caused by a workpiece profile which is generated during a previous 
tool pass [7],[16]. Thorough review of the current state of the art in dynamics of cutting and 
grinding processes, new challenges in modelling and avoiding machine tool vibrations are 
presented in [1]. These authors provided a significant review of literature in the related 
areas, which will not be repeated here. 

Generally, the set of publications can be divided into either of the following groups: 
where chatter is produced by regenerative effect [2,3],[8],[17-19],[19,20],[22] and dry 
friction [9,10],,14;15],[23-26]. There is a lack of papers which treat both problems together 
and explain interactions between them. 

This paper shows vibrations of 1 and 2 DOF models of a cutting process. The first part 
is devoted to models which include a new approach of cutting force using Rayleigh’s self-
excitation. The next part of the work covers dynamical analysis of the systems with  
a comparison of phenomena caused by regenerative effect and dry friction simultaneously. 
Additionally, the 2 DOF model is supplied with centrifugal force. 

2. MODELS OF CUTTING PROCESS 

 Modelling of mechanical systems play a key role in research because results, to a large 
extent, depend on the kind of model, its correctness and on selection of proper phenomena 
which are essential for the considered process. At the beginning a 2 DOF model with single 
lumped mass is presented in Fig. 1. The workpiece motion in x and y directions is 
considered therefore two independent variables, in order to define the mass position, is 
necessary. It means that the system has 2 DOF. Simplifying this model by a projection  
of motion in one direction (y) a 1 DOF system is obtained.  

A model of a cutting process can be reduced to a planar oscillator which is excited by 
the cutting force component Fz, Fy and a centrifugal force B (Fig. 1). The elastic, dissipative 
and inertial properties of the workpiece are denoted as ky, kz, cy, cz and m. The lumped mass 
m is actually a reduced mass of the workpiece received from an experiment on the basis  
of natural frequency of the workpiece which is fixed in a jaw chuck. 

In this model stiffness k and damping c are linear. B is the inertial force deriving from 
the displacement of the mass centre (point C) of the workpiece in relation to the centre  
of rotation (point O). This displacement is produced by tool pressure and vibrations of the 
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workpiece. The inertial force depends on the workpiece angular velocity ω, reduced mass m 
and displacements y and z:  

 

                  2 2 2B m y zω= +                 (1) 

 

 
 

Fig. 1. 2DOF frictional model of cutting process 

The nonlinear forces Fz, Fy are the most important features of the model. As it is shown 
in Fig. 2, the cutting force is a nonlinear function of cutting depth and speed. Therefore the 
cutting force Fz may be represented by the equation: 
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where: ap is an actual depth of cut, vwz is a relative velocity between a tool and a chip in z 
direction, ρ, αz, βz, are constants for the chosen process and Kz corresponds to a cutting 
resistance. Since the model accounts for the instantaneous separation of the tool from the 
workpiece, Heaviside’s function H() is introduced. The expression 3(1 )z wz z wzv vα β− +  given 
in (2) presents the self-excited Rayleigh’s term. That is a new approach in cutting force 
modeling. The actual depth ap and the velocity vwz are defined as follows: 
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where apo – is an assumed depth of cut, vc – is a cutting speed, kh – is a chip thickness ratio. 
The motion in z direction influences a motion in y direction therefore the thrust force 

Fy is defined by means of the cutting force Fz in the following way: 

      ( )( )3α β= − +y z wy y wy y wyF F Sgn v v v                          (4) 
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 a) 

 

b) 

 

c) 

 

  
Fig. 2 Cutting force as a function of relative velocity vwz (a); cutting force as a function of cutting depth apo (b); thrust 

force as a function of relative velocity vwy (c) 

where, wy wyv v y′= − & , wyv ′ - is a velocity of a chip flow in y direction when the process is 

static which can be understood as cutting velocity, βy and αy - are constants which describe 
the force characteristic. Sgn() means the sign function defined as follows: 
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The characteristics of the proposed forces are shown in Fig. 2. The above forces 
consist of static and dynamic parts. The static forces Fzo, Fyo describe the process when there 
are not vibrations in the system, so that the process is static:  

      

( )

3

3

1

1

ρ α β

α β

  
 = − +     

′ ′= − +

c c
zo z po z z

h h

yo zo y wy y wy

v v
F K a

k k

F F v v

     (6) 

The differential equations of the system dynamics can be written as: 
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To concentrate on the nonlinear phenomena produced by dry friction, the 2 DOF 
model is reduced to y direction (Fig. 3) and the inertial force B is neglected.  

 
a) 

 

b) 

 
Fig. 3. 1DOF frictional model of cutting process 
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Now, the thrust force is Fy and is expressed as follows: 

      ( )( )3 ( )y y p wy y wy y wy pF K a Sgn v v v H aρ α β= − +    (8) 

and differential equation of motion takes the form: 
       y y y yomy k y c y F F+ + = −&& &      (9) 

To compare 1DOF frictional model (Fig. 3a) with a regenerative one (Fig. 3b) and also 
in order to explore mutual interaction between frictional and regenerative effects, time delay 
t%  is introduced to equation (8) which changes as follows: 

    ( )( ) ( )( )3 ( )y y po wy y wy y wy pF K a y y t t Sgn v v v H a
ρ

α β= − + − − +%            (10) 

where: 
2

t
π

ω
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The next section is devoted to analysis of these models and shows major differences 
and interdependences between them. 

3. FRICTION and REGENERATIVE CHATTER 

Both friction and regenerative effects can cause vibrations which are called “chatter”. 
To obtain an exact solution of the 1DOF system with dry friction, the analytical method of 
multiple scales is engaged. The results presented below are obtained by means of following 
parameter values apo =3 mm, v’wy=1.5 m/s, ky =92.472 kN/m, cy=5 kg/s, m=0.51 kg, Ky=44 
kN/m, ρ =0.95, αy=0.4, βy=0.05. Fig. 4a shows stability diagram versus depth of cut apo and 
cutting velocity v’wy. Stable trivial (zero) solutions  need a  relatively high  cutting speed and  
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Fig. 4. Stability diagram (a). Vibration amplitude versus cutting velocity (b) and cutting resistance (c) 
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small cutting depth. The curve represents analytical solutions (AS) while the points – 
numerical ones (NS). An influence of the cutting velocity on vibrations amplitude (a) is also 
shown in Fig. 4b where the amplitude decreases with increasing cutting speed? and above 
1.6 m/s, where the bifurcation point (OBH) is marked, only trivial solution exists. As far as 
cutting resistance Ky is concerned Fig. 4c, in the range below 20 kN/m stable cutting occurs. 
After bifurcation point (BH) the vibrations amplitude (a) increases. 

Now, the additional regenerative effect is taken into account. In the case the thrust 
force is given by equation (10). Then the model includes both the nonlinear friction force 
and the regenerative effect. To focus only on the last one, it is assumed that 

      ρ=1, αy=0, βy=0, H(apo)=1, Sgn(v’wy)=1            (11) 

thus, the linear model with delay is obtained which can be expressed by  
a dimensionless differential equation in the form:  

      1 1 1 1 12
( ( ))y y

yo yo

c K
y y y y y

mp mp
τ τ+ + = − + −&& & %             (12) 

where: 1y  is dimensionless displacement, yop  denotes the natural vibrations frequency for 

the linear case and τ  is dimensionless time. As a result of analytical analysis of equation 
(12), the stability diagram with the characteristic unstable lobes (striped region) is presented 
in Fig. 5a. For the cutting resistance Ky <7000 N/m only stable solutions appear irrespective 
of the time delay or the angular velocityω . For Ky >7000 N/m the unstable lobes exist 
interchangeably with the stable (white) regions. That is rather typical, but if the parameters 
do not satisfy equation (11) and the thrust force is nonlinear, the unstable shaded lobes are 
bigger then before (see striped and shaded regions in Fig. 5a). 

 
a) 

 

b) 

 

Fig. 5. Stability diagram for regenerative cutting 

Considering equation (12) it is noticed that the cutting depth (apo) does not influence  
the system dynamics. While the numerical simulation made for non-linear case gives the 
reverse results (Fig. 5b). An increase of the cutting depth leads to unstable regions. To sum 
up, adding another nonlinearity to regenerative model enlarges the unstable region. 
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 As far as the dynamics of the cutting process, on the base of 2DOF frictional system, is 
concerned, it would be interesting to observe a bifurcation diagram as a function of angular 
velocity ω 1. Such a diagram is shown In Fig. 6 for the following parameters: cy=cz =5 kg/s, 
m =0.51 kg, Kz =44 kN/m, ρ= 0.95, αy =0.4, βy =0.05, αz =0.16, βz =0.0032, vc =2.275 
m/s, η=0.7, kh=  2.5, apo =0.003 m, v’wy =1.5 m/s, ky= kz =992.472 kN/m. 

a)                                                            
b) 
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Fig. 6. Bifurcation diagram for 2 DOF system (a), space (b) 
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Fig. 7. Bifurcation diagram for 2DOF flexible system (a), phase space (b) 
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At the beginning, for smallω 1periodic oscillations occur which next change into quasi 
periodic and after synchronisation region (S) double period bifurcation (DPB) is visible. 
Next 2-period vibrations undergo in quasi-periodic motion in order that after several 
bifurcations goes into harmonic vibrations. To obtain more information about system 
dynamics phase space diagrams for chosen ω 1 are made. Besides, the phenomena shown 
before as doubling period, a so called stick-slip effect is present as well. 

By changing the stiffness coefficient of the system, completely different behaviour 
may occur. New values of parameters are as follows: ky=kz=9924.7N/m and m=5.1kg that 
means more flexible system. The bifurcation diagram for new set of parameters is shown in 
Fig. a. Various kinds of vibrations are visible starting from regular (period 1) through period 
2 till chaotic vibrations for ω 1=1 and next period 4 for ω 1=1.15. Thus, decreasing system 
stiffness can cause chaotic behaviour. 

4. CONCLUSIONS 

A real cutting process has a lot of different factors which influence system dynamics. 
The proposed models contain only a few of them. In the paper new approach to nonlinear 
cutting force is developed on the basis of friction force expressed by Rayleigh’s term. This 
element is responsible for a self-excitation of the system and as a result chatter vibrations 
appear. The amplitude grows when the cutting depth increases and falls down when the 
cutting velocity increases. Taking into consideration the fact that bigger cutting resistance 
produces bigger values of forces, that can suggest optimal cutting parameters. 

Analysis of the pure regenerative model gives convergent outcomes in relation to 
others publications. However, by connecting the regenerative and friction effects one can 
obtain more instabilities in the system. Though, big enough cutting velocity leads to stable 
trivial solution (process without chatter) for the frictional model nevertheless, the 
regenerative model produces unstable lobes. What is more, adding nonlinear elements to the 
model enlarges unstable cutting regions. 

Vibrations created by the dry friction phenomenon are especially dangerous in the case 
of flexible workpiece when chaotic behaviour is observed. Although, increasing rotational 
velocity stabilizes the process, one should remember to avoid unstable lobes typical for high 
speed machining.  
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