PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Segmentation of aggregate and asphalt in photographic images of pavements

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Particle size distribution of aggregate in asphalt pavements is used for determining important characteristics like stiffness, durability, fatigue resistance, etc. Unfortunately, measuring this distribution requires a sieving process that cannot be done directly on the already mixed pavement. The use of digital image processing could facilitate this measurement, for which it is important to classify aggregate from asphalt in the image. This classification is difficult even for humans and much more for classical image segmentation algorithms. In this paper, an expert committee approach was used, including classical adaptive Otsu, k-means vector quantization over a set of 8 principal components obtained from 26 features, and a Gaussian mixture model whose parameters are estimated through the expectation-maximization algorithm. A novel cellular automata approach is used to coordinate these expert opinions. Finally, a simple heuristic is used to reduce sub- and over-segmentation. The segmentation results are comparable to those obtained by a human expert, while the sieve size of the segmented images corresponds very well with that obtained from the sieving process, validating the proposed method of segmentation. The results show that with the digital imaging procedure it was possible to detect particles with a size of 100 m with 90% of success with respect to time-consuming manual techniques. In addition, with these results it is possible to establish the homogeneity of the sample and the distribution of the particles within the asphalt mixture.
Rocznik
Strony
19--42
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
  • School of Engineering, Universidad Militar Nueva Granada Bogotá, Colombia
  • School of Engineering, District University of Bogotá Bogotá, Colombia
  • School of Engineering, Universidad Militar Nueva Granada Bogotá, Colombia
Bibliografia
  • 1. Zhang Y., Mohsen J.P., A project-based sustainability rating tool for pavement maintenance, Engineering, 4(2): 200–208, 2018, doi: 10.1016/j.eng.2018.03.001.
  • 2. Jamshidi A., Kurumisawa K., Nawa T., Jize M., White G., Performance of pavements incorporating industrial byproducts: A state-of-the-art study, Journal of Cleaner Production, 164: 367–388, 2017, doi: 10.1016/j.jclepro.2017.06.223.
  • 3. Gao L., Li H., Xie J., Yu Z., Charmot S., Evaluation of pavement performance for reclaimed asphalt materials in different layers, Construction and Building Materials, 159: 561–566, 2018, doi: 10.1016/j.conbuildmat.2017.11.019.
  • 4. Partl M.N. et al., Advances in Interlaboratory Testing and Evaluation of Bituminous Materials: State-of-the-Art Report of the RILEM Technical Committee 206-ATB, Springer Netherlands, 2012.
  • 5. Mataei B., Moghadas Nejad F., Zahedi M., Zakeri H., Evaluation of pavement surface drainage using an automated image acquisition and processing system, Automation in Construction, 86: 240–255, 2018, doi: 10.1016/j.autcon.2017.11.010.
  • 6. Wightman C., Muzzio F.J., Wilder J., A quantitative image analysis method for characterizing mixtures of granular materials, Powder Technolog, 86(2): 165–176, 1996, doi:10.1016/S0032-5910(96)03178-6.
  • 7. Reyes-Ortiz O.J., Mejía M., Useche-Castelblanco J.S., Image digital processing for the homogeneity calculation of an asphalt mix, Congreso Internacional Multimedia, Vol. 5, Universidad Militar, Bogotá, 2017.
  • 8. Zhang K., Zhang Z., Luo Y., Huang S., Accurate detection and evaluation method for aggregate distribution uniformity of asphalt pavement, Construction and Building Materials, 152: 715–730, 2017, doi: 10.1016/j.conbuildmat.2017.07.058.
  • 9. Wu J., Wang L., Hou Y., Xiong H., Lu Y., Zhang L., A digital image analysis of gravel aggregate using CT scanning technique, International Journal of Pavement Research and Technology, 11(2): 160–167, 2018, doi: 10.1016/j.ijprt.2017.08.002.
  • 10. Bonifazi G., Palmieri R., Serranti S., Evaluation of attached mortar on recycled concrete aggregates by hyperspectral imaging, Construction and Building Materials, 169: 835–842, 2018, doi: 10.1016/j.conbuildmat.2018.03.048.
  • 11. Gonzalez R.C., Woods R.E., Digital Image Processing (3rd Ed.), Prentice-Hall, Inc., 2006.
  • 12. Otsu N., A threshold selection method from Gray-Level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62–66, 1979, doi: 10.1109/TSMC.1979.4310076.
  • 13. Ziou D., Tabbone S., Edge detection techniques – an overview, Pattern Recognition and Image Analysis: Advances in Mathematical Theory and Applications, 8(4): 537–559, 1998.
  • 14. Kamble S.D., Pawar D., Jagtap S., Morphological image segmentation by morphological watersheds, International Journal of Recent Scientific Research, 10(01): 30370–30374, 2019, doi: 10.24327/ijrsr.2019.1001.3045.
  • 15. Shapiro L.G., Stockman G., Computer Vision, New Jersey: Prentice Hall, 2001.
  • 16. Chouhan S.S., Kaul A., Singh U.P., Image segmentation using computational intelligence techniques: review, Archives of Computational Methods in Engineering, 26(3): 533–596, 2019, doi: 10.1007/s11831-018-9257-4.
  • 17. Yue Z.Q., Bekking W., Morin I., Application of digital image processing to quantitative study of asphalt concrete microstructure, Transportation Research Record, 1492: 53–60, 1995.
  • 18. Lee J.R.J., Smith M. L., Smith L.N., Midha P.S., A mathematical morphology approach to image based 3D particle shape analysis, Machine Vision and Applications, 16(5): 282–288, 2005, doi: 10.1007/s00138-005-0181-x.
  • 19. Zelelew H.M., Application of digital image processing techniques for asphalt concrete mixture images, [in:] The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), pp. 119–124, 2008.
  • 20. Hu J., Qian Z., Liu Y., Xue Y., Microstructural characteristics of asphalt concrete with different gradations by X-ray CT, Journal of Wuhan University of Technology-Mater. Sci. Ed., 32(3): 625–632, 2017, doi: 10.1007/s11595-017-1644-4.
  • 21. Arambula E., Garboczi E.J., Masad E., Kassem E., Numerical analysis of moisture vapor diffusion in asphalt mixtures using digital images, Materials and Structures, 43(7): 897–911, 2010, doi: 10.1617/s11527-009-9554-3.
  • 22. Moon K.H., Falchetto A.C., Microstructural investigation of Hot Mix Asphalt (HMA) mixtures using Digital Image Processing (DIP), KSCE Journal of Civil Engineering, 19(6): 1727–1737, 2015, doi: 10.1007/s12205-01.
  • 23. Yang J., Chen S., An online detection system for aggregate sizes and shapes based on digital image processing, Mineralogy and Petrology, 111(1): 135–144, 2017, doi: 10.1007/s00710-016-0458-y.
  • 24. Yan L. et al., A numerical method for analyzing the permeability of heterogeneous geomaterials based on digital image processing, Journal of Zhejiang University-SCIENCE A, 18(2): 124–137, 2017, doi: 10.1631/jzus.A1500335.
  • 25. Zakeri H., Nejad F.M., Fahimifar A., Image based techniques for crack detection, classification and quantification in asphalt pavement: a review, Archives of Computational Methods in Engineering, 24(4): 935–977, 2017, doi: 10.1007/s11831-016-9194-z.
  • 26. Khattak M.J., Khattab A., Rizvi H.R., Das S., Bhuyan M.R., Imaged-based discrete element modeling of hot mix asphalt mixtures, Materials and Structures, 48(8): 2417–2430, 2015, doi: 10.1617/s11527-014-0328-1.
  • 27. Bahia H.U., Coenen A., Tabatabaee N., Mixture design and compaction, [in:] Advances in Interlaboratory Testing and Evaluation of Bituminous Materials, Partl M. et al. [Eds], Springer Netherlands, 2013.
  • 28. Modified-Asphalt-Research-Center, iPas software, University of Wisconsin at Madison, 2018, [Online]. Available: https://uwmarc.wisc.edu/ipas-software-package.
  • 29. Doll B., Ozer H., Rivera-Perez J.J., Al-Qadi I.L., Lambros J., Investigation of viscoelastic fracture fields in asphalt mixtures using digital image correlation, International Journal of Fracture, 205(1): 37–56, 2017, doi: 10.1007/s10704-017-0180-8.
  • 30. Buttlar W.G. et al., Digital image correlation techniques to investigate strain fields and cracking phenomena in asphalt materials, Materials and Structures, 47(8): 1373–1390, 2014, doi: 10.1617/s11527-014-0362-z.
  • 31. Mei A., Manzo C., Bassani C., Salvatori R., Allegrini A., Bitumen removal determination on asphalt pavement using digital imaging processing and spectral analysis, Open Journal of Applied Sciences, 4(6): 366–374, 2014, doi: 10.4236/ojapps.2014.46034.
  • 32. Sefidmazgi N.R., Tashman L., Bahia H., Internal structure characterization of asphalt mixtures for rutting performance using imaging analysis, Road Materials and Pavement Design, 13(Sup1): 21–37, 2012, doi: 10.1080/14680629.2012.657045.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be3a49de-7c3f-4f59-96ab-1c0b39d5e619
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.