PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Using Agglomeration Techniques for Coal and Ash Waste Management in the Circular Economy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This is a scoping review of agglomeration techniques to obtain of solid bodies from particle waste-materials for their utilization. For this purpose, the granulation and briquetting of fine coal and fly ash were presented in detail. Many successful works on solid fuels production, with coal only, and also with the addition of biomass, were presented. During the solid fuel combustion in power boilers, significant amounts of ash are generated. The properties of fly ashes were taken into consideration, and different methods of their utilization were proposed to obtain a wide range of useful products. Con-sequently, the waste resources of coal and ash were fully utilized. In final remarks, it was concluded, that the agglomeration techniques play an important role in waste management, but particularly in the circular economy.
Twórcy
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Mechanical Engineering Department, Tafila Technical University, P.O. Box 179, Tafila 66110, Jordan
autor
  • Mechanical Engineering Department, Tafila Technical University, P.O. Box 179, Tafila 66110, Jordan
Bibliografia
  • 1. Boruk, S.; Winkler, I. Ecologically friendly utilization of coal processing waste as a secondary energy source. In: Energy and Environmental Challenges to Security; Stec, S., Baraj, B., Eds.; Springer Publishers, Dordrecht, The Netherlands, 2009, pp. 251–259.
  • 2. Lazaro, M.J.; Boyano, A.; Galvez, M.E.; Izquierdo, M.T.; Moliner, R. Low-cost carbon-based briquettes for the reduction of NO emissions from medium-small stationary sources. Catalysis Today 2007, 119, 175–180. [https://doi.org/10.1016/j.cattod.2006.08.038]
  • 3. Aghazadeh, S.; Gharabaghi, M.; Azadmehr, A. Increasing the useful heating value of coal using a physico-chemical process. International Journal of Coal Preparation and Utilization 2016, 36, 175–191. [https://doi.org/10.1080/19392699.2015.1069280]
  • 4. Hycnar, J.J.; Fraś, A.; Przystaś, R.; Foltyn, R. Current state and perspectives of quality improvement of coal slimes for power generation. In: The issues of energy resources and energy in the national economy; Proceedings of the 27th Conference; Zakopane, Poland, 13–16 Oct., 2013, pp. 61–74.
  • 5. Kurus, K.; Bialecka, B.; Foitová-Dernerová, P. Model of coal mining waste management system in Upper Silesian Coal Basin. Systemy Wspomagania w Inżynierii Produkcji 2014, 3, 131–142.
  • 6. Merkus, H.G.; Meesters, G.M.H., Eds. Production, handling and characterization of particulate materials. Springer Int. Publ., Switzerland, 2016, p. 548.
  • 7. Zaostrovskii,A.N.; Sarychev, V.D.; Umanskii,A.A.; Murko, V.I. Thermal analysis of coal and water-coal suspensions. Coke and Chemistry 2012, 55, 10–14. [https://doi.org/10.3103/S1068364X12010085]
  • 8. Kuczyńska, I. Alternative fuels prepared from coal mud. In: International Coal Preparation Congress: Conference Proceedings; Honaker, R.Q., Ed.; Littleton, Colorado, USA, 2010, pp. 811–816.
  • 9. Temmerman, M.; Rabier, F.; Jensen, P.D.; Hartmann, H.; Bohm, T., Comparative study of durability test methods for pellets and briquettes. Biomass and Bioenergy 2006, 30, 964–972. [https://doi. org/10.1016/j.biombioe.2006.06.008]
  • 10. Purohit, P.; Tripathi, A.K.; Kandpal, T.C. Energetics of coal substitution by briquettes of agricultural residues. Energy 2006, 31, 1321–1331. [https://doi. org/10.1016/j.energy.2005.06.004]
  • 11. Shuming, W.; Caixing, Z.; Jundan C. Utilization of coal fly ash for the production of glass-ceramics with unique performances, A brief review. Journal of Materials Science & Technology 2014, 30, 1208– 1212. [https://doi.org/10.1016/j.jmst.2014.10.005]
  • 12. Safiuddin, Md.; Jumaat, M.Z.; Salam, M.A.; Islam, M.S.; Hashim, R. Utilization of solid wastes in construction materials. International Journal of Physical Sciences 2010, 5, 1952–1963. [https://doi. org/10.5897/IJPS.9000617]
  • 13. Blissett, R.S.; Rowson, N.A. A review of the multicomponent utilisation of coal fly ash. Fuel 2012, 97, 1–23. [https://doi.org/10.1016/j.fuel.2012.03.024]
  • 14. Basu, M.; Pande, M.; Bhadoria, P.B.S.; Mahapatra, S.C. Potential fly-ash utilization in agriculture, A global review. Progress in Natural Science 2009, 19, 1173–1186. [https://doi.org/10.1016/j. pnsc.2008.12.006]
  • 15. Toraldo, E.; Saponaro, S. A road pavement fullscale test track containing stabilized bottom ashes. Environmental Technology 2015, 36, 1114–1122. [https://doi.org/10.1080/09593330.2014.982714]
  • 16. Querol, X.; Moreno, N.; Umaña, J.C.; Alastuey, A.; Hernández, E.; López-Soler, A.; Plana, F. Synthesis of zeolites from coal fly ash, An overview. International Journal of Coal Geology 2002, 50, 413–423. [https://doi.org/10.1016/S0166-5162(02)00124-6]
  • 17. Fukasawa, T.; Horigome, A.; Karisma, A.D.; Maeda, N.; An-Ni Huang; Fukui, K. Utilization of incineration fly ash from biomass power plants for zeolite synthesis from coal fly ash by microwave hydrothermal treatment. Advanced Powder Technology 2018, 29, 450–456. [https://doi. org/10.1016/j.apt.2017.10.022]
  • 18. Yang, L.; Ying-hong, W.; Shu-hua, M.; Shi-li, Z.; Chu, P.K. An eco-friendly and cleaner process for preparing architectural ceramics from coal fly ash. Pre-activation of coal fly ash by a mechanochemical method. Journal of Cleaner Production 2019, 214, 419–428. [https://doi.org/10.1016/j. jclepro.2018.12.292]
  • 19. Johnson, O.A.; Napiah, M.; Kamaruddin, I. Potential uses of waste sludge in construction industry, A review. Research Journal of Applied Sciences, Engineering and Technology 2014, 8, 565–570.
  • 20. COM(2020) 98 final. A new Circular Economy Action Plan for a cleaner and more competitive Europe. [https://eur-lex.europa.eu/legal-content/EN/TXT/?q id=1583933814386&uri=COM:2020:98:FIN]
  • 21. Pietsch, W.B. Agglomeration processes: Phenomena, technologies, equipment. John Wiley & Sons, 2008, p. 622.
  • 22. Altun, N.E.; Hicyilmaz, C.; Kök, M.V. Effect of different binders on the combustion properties of lignite, Part I. Effect on thermal properties. Journal of Thermal Analysis and Calorimetry 2001, 65, 787– 795. [https://doi.org/10.1023/A:1011915829632]
  • 23. Reynolds, G.K.; Fu, J.S.; Cheong, Y.S.; Hounslow, M.J.; Salman, A.D. Breakage in granulation: A review. Chemical Engineering Science, 2005, 60, 3969– 3992. [https://doi.org/10.1016/j.ces.2005.02.029]
  • 24. Shanmugam, S. Granulation techniques and technologies: Recent progresses. Bioimpacts 2015, 5, 55–63. [https://doi.org/10.15171/bi.2015.04]
  • 25. Iveson, S.M.; Litster, J.D.; Hapgood, K.; Ennis, B.J. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technology 2001, 117, 3–39. [https://doi. org/10.1016/S0032-5910(01)00313-8]
  • 26. Zainuddin, M.I.; Tanakaa, S.; Furushimaa, R.; Uematsu, K. Correlation between slurry properties and structures and properties of granules. Journal of the European Ceramic Society 2010, 30, 3291–3296. [https://doi.org/10.1016/j.jeurceramsoc.2010.07.004]
  • 27. Gurses, A.; Doymus, K.; Dogar, C.; Yalcin, M. Investigation of agglomeration rates of two Turkish lignites. Energy Conversion and Management 2003, 44, 1247–1257. [https://doi.org/10.1016/ S0196-8904(02)00142-5]
  • 28. Herting, M.G.; Kleinebudde, P. Roll compaction/ dry granulation: Effect of raw material particle size on granule and tablet properties. International Journal of Pharmaceutics 2007, 338, 110–118. [https:// doi.org/10.1016/j.ijpharm.2007.01.035]
  • 29. Borowski, G. Agglomeration processes for waste utilization in a circular economy. Published by Polish Academy of Science, Warsaw, 2020, p. 160.
  • 30. Mangwandi, C.; Adams, M.J.; Hounslow, M.J.; Salman, A.D. Effect of batch size on mechanical properties of granules in high shear granulation. Powder Technology 2011, 206, 44–52. [https://doi. org/10.1016/j.powtec.2010.05.025]
  • 31. Flore, K.; Schoenherr, M.; Feise, H. Aspects of granulation in the chemical industry. Powder Technology 2009, 189, 327–331. [https://doi.org/10.1016/j. powtec.2008.04.010]
  • 32. Feliks, J. Laboratory testing of coal sludge granulation. Chemik 2012, 66, 388–395.
  • 33. Naumov, K.I.; Maloletnev, A.S.; Mazneva, O.A. Advanced processes for manufacturing agglomerated fuel from fine coals. Solid Fuel Chemistry 2013, 47, 47–55. [https://doi.org/10.3103/ S0361521912060080]
  • 34. Borowski, G.; Hycnar, J.J. Utilization of fine coal waste as a fuel briquettes. International Journal of Coal Preparation and Utilization 2013, 33, 194–204. [https://doi.org/10.1080/19392699.2013.787993]
  • 35. Obraniak, A.; Gluba, T.; Ławińska, K.; Derbiszewski, B. Minimisation of environmental effects related with storing fly ash from combustion of hard coal. Environment Protection Engineering 2018, 44, 177–189. [https://doi.org/10.5277/epe180412]
  • 36. Borowski, G.; Ozga, M. Comparison of the processing conditions and the properties of granules made from fly ash of lignite and coal. Waste Management 2020, 104C, 192–197. [https://doi.org/10.1016/j. wasman.2020.01.024]
  • 37. Pyssa, J. Extractive waste from hard coal mining in Poland – balance, status of management and environmental aspects. In: Energy and Fuels 2016; Proceedings of the E3S Web of Conferences, 2017. [https://doi.org/10.1051 /e3sconf/20171402024 ]
  • 38. Łączny, J.M.; Iwaszenko, S.; Gogola, K.; Bajerski, A.; Janoszek, T.; Klupa, A. Cempa-Balewicz M.: Study on the possibilities of treatment of combustion by-products from fluidized bed boilers into a product devoid of free calcium oxide. Journal of Sustainable Mining, 2015, 14, 164–172. [https:// doi.org/10.1016/j.jsm.2015.12.002]
  • 39. Yoshimoto, N.; Hyodo, M.; Nakata, Y.; Orense, R.P.; Hongo, T.; Ohnaka, A. Evaluation of shear strength and mechanical properties of granulated coal ash based on single particle strength. Soils and Foundations 2012, 52, 321–334. [https://doi. org/10.1016/j.sandf.2012.02.009]
  • 40. Solovei, V.N.; Spiridonova, E.A.; Samonin, V.V.; Khrylova, E.D.; Podvyaznikov M.L. Synthesis of spherically shaped granulated carbon sorbent. Russian Journal of Applied Chemistry 2016, 89, 1102–1108. [https://doi.org/10.1134/ S1070427216070090]
  • 41. Zhao, Y.; Chang, H.; Ji, D.; Liu, Y. The research progress on the briquetting mechanism of fine coal. Journal of Coastal Conservation 2001, 24, 12–14.
  • 42. Taulbee, D.; Patil, D.P.; Honaker, R.Q.; Parekh, B.K. Briquetting of coal fines and sawdust. Part I: Binder and briquetting-parameters evaluations. International Journal of Coal Preparation and Utilization 2009, 29, 1–22. [https://doi. org/10.1080/19392690802628705]
  • 43. Yilmaz, E. Advances in reducing large volumes of environmentally harmful mine waste rocks and tailings. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2011, 27, 89–112.
  • 44. Galos, K.; Szluga, J. Management of hard coal mining and processing wastes in Poland. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2014, 30, 51–64. [https://doi. org/10.2478/gospo-2014-0039]
  • 45. Blesa, M.J.; Miranda, J.L.; Izquierdo, M.T.; Moliner, R. Curing time effect on mechanical strength of smokeless fuel briquettes. Fuel Processing Technology 2003, 80, 155–167. [https://doi.org/10.1016/ S0378-3820(02)00243-6]
  • 46. Honaker, R.Q.; Patil, D. P.; Sirkeci, A.; Patwardhan, A. Production of premium fuels from coal refuse pond material. Mining, Metallurgy & Exploration 2001, 18, 177–183. [https://doi.org/10.1007/ BF03403246]
  • 47. Zakari, I.Y.; Ismaila, A.; Sadiq, U.; Nasiru, R. Investigation on the effects of addition of binder and particle size on the high calorific value of solid biofuel briquettes. Journal of Natural Sciences Research 2013, 3, 30–34.
  • 48. Borowski, G. 2013. Methods of fine-grained waste processing into useful products. Published by Lublin University of Technology, Lublin, Poland, p. 112.
  • 49. Iacovidou, E.; Hahladakis, J.; Deans, I.; Velis, C.; Purnell, P. Technical properties of biomass and solid recovered fuel (SRF) co-fired with coal: impact on multi-dimensional resource recovery value. Waste Management 2018, 73, 535–545. [https:// doi.org/10.1016/j.wasman.2017.07.001]
  • 50. Wang, J.C.; Wang, J.Q. Study on biologic briquette binder. Applied Energy Technology 2004, 4, 15–16.
  • 51. Zhong, H.; Cao, Z. A study on carboxylmethyl starch as the binder in coal briquets. Hunan Chemical Industry 2000, 30, 23–25.
  • 52. Zhu, S.K.; Wu, X.X. Study on coking waste to prepare the binder for briquette coal. Guangzhou Chemical Industry 2011, 39, 106–108.
  • 53. Zhang, G.; Sun, Y.; Xu, Y. Review of briquette binders and briquetting mechanism. Renewable and Sustainable Energy Reviews 2018, 82, 477– 487. [https://doi.org/10.1016/j.rser.2017.09.072]
  • 54. Leokaoke, N.T.; Bunt, J.R.; Neomagus, H.W.J.P.; Waanders, F.B.; Strydom, C.A.; Mthombo, T.S. Manufacturing and testing of briquettes from inertinite-rich low-grade coal fines using various binders. Journal of the Southern African, Institute of Mining and Metallurgy 2018, 118, 83–88. [http:// dx.doi.org/10.17159/2411-9717/2018/v118n1a10]
  • 55. Wang, Ch.; Harbottle, D.; Liu, Q.; Xu, Z. Current state of fine mineral tailings treatment, A critical review on theory and practice. Minerals Engineering 2014, 58, 113–131. [https://doi.org/10.1016/j. mineng.2014.01.018]
  • 56. Kubica, K.; Ściążko, M.; Rainczak, J. Co-firing of coal and biomass. Polityka Energetyczna – Energy Policy Journal 2003, 6, 297–308.
  • 57. Faizal, M. Utilization biomass and coal mixture to produce alternative solid fuel for reducing emission of greenhouse gas. International Journal on Advanced Science Engineering Information Technology 2017, 7, 950–956. [https://doi.org/10.18517/ijaseit.7.3.2474]
  • 58. Kalembkiewicz, J.; Chmielarz, U. Ashes from cocombustion of coal and biomass: new industrial wastes. Resources, Conservation and Recycling 2012, 69, 109–121. [https://doi.org/10.1016/j. resconrec.2012.09.010]
  • 59. Ozga, M.; Borowski, G. The use of granulation to reduce dusting and manage of fine coal. Journal of Ecological Engineering 2018, 19, 218–224. [https://doi.org/10.12911/22998993/89794]
  • 60. Hycnar, J.J.; Pasiowiec, P.; Tora, B. Methods of increasing the calorific value of fine coal waste. In: Proceedings of the XVIII International Coal Preparation Congress, Litvinenko, V., Ed.; Springer, Cham, 2016. [https://doi.org/10.1007/978-3-319-40943-6_61]
  • 61. Isobe, Y.; Wang, Q.; Sakamoto, K. 2004. Utilization of coal-biomass briquette combustion ash for soil improvement. Environmental Science 17(6), 431– 438. [https://doi.org/10.11353/sesj1988.17.431]
  • 62. Giemza, H.; Gruszka, G.; Hycnar, J.J.; Józefiak, T.; Kiermaszek, K. Optimization of coal sediment management – sediment briquetting technology. Polityka Energetyczna – Energy Policy Journal 2007, 10, 417–429.
  • 63. Fecko, P.; Tora, B.; Tod, M. Coal waste, handling, pollution. impacts and utilization. In: The Coal Handbook, Towards Cleaner Production. Coal Utilisation. Volume 2 in Woodhead Publishing Series in Energy, 2013, pp. 63–84. [https://doi. org/10.1533/9781782421177.1.63]
  • 64. Kijo-Kleczkowska, A. Combustion of coal-mule briquettes. Archives of Mining Sciences 2013, 58, 617–628. [https://doi.org/10.2478/amsc-2013-0043]
  • 65. Fu, X.; Wang, Z.; Tao, W.; Yang C.; Hou, W.; Dong, Y.; Wu, X. Studies on blended cement with a large amount of fly ash. Cement and Concrete Research 2002, 32, 1153–1159. [https://doi.org/10.1016/ S0008-8846(02)00757-3]
  • 66. Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. A comprehensive review on the applications of coal fly ash. EarthScience Reviews 2015, 141, 105–121. [https://doi. org/10.1016/j.earscirev.2014.11.016]
  • 67. Arslan, H.; Baykal, G. Utilization of fly ash as engineering pellet aggregates. Environmental Geology 2006, 50, 761–770.
  • 68. Huang, S-C.; Chang, F-C.; Lo, S-L.; Lee, M-Y.; Wang, C-F.; Lin, J-D. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. Journal of Hazardous Materials 2007, 144, 52–58. [https://doi.org/10.1016/j. jhazmat.2006.09.094]
  • 69. Mäkelä, M.; Paananen, T.; Kokkonen, T.; Makkonen, H.; Heino, J.; Dahl, O. Preliminary evaluation of fly ash and lime for use as supplementary cementing materials in cold-agglomerated blast furnace briquetting. International Science and Investigation Journal 2011, 51, 776–781. [https:// doi.org/10.2355/isijinternational.51.776]
  • 70. Lin, K.L. Feasibility study of using brick made from municipal solid waste incinerator fly ash slag. Journal of Hazardous Materials 2006, 137, 1810–1816. [https://doi.org/10.1016/j.jhazmat.2006.05.027]
  • 71. Gesoglu, M.; Güneyisi, E.; Öz, H.Ö. Properties of lightweight aggregates produced with cold-bonding pelletization of fly ash and ground granulated blast furnace slag. Materials and Structures 2012, 45, 1535– 1546. [https://doi.org/10.1617/s11527-012-9855-9]
  • 72. Senol, A.; Edil, T.B.; Bin-Shafique, Md.S.; Acosta, H.A.; Benson, C.H. Soft subgrades’ stabilization by using various fly ashes. Resources, Conservation and Recycling 2006, 46, 365–376. [https://doi. org/10.1016/j.resconrec.2005.08.005]
  • 73. Toraldo, E.; Saponaro, S. A road pavement fullscale test track containing stabilized bottom ashes. Environmental Technology 2015, 36, 1114–1122. [https://doi.org/10.1080/09593330.2014.982714]
  • 74. Kępys, W. Manufacture of artificial aggregates using fine-grained hazardous wastes. Inżynieria Ekologiczna 2010, 23, 70–76.
  • 75. Bultmann, J.M. Multiple compaction of microcrystalline cellulose in a roller compactor. European Journal of Pharmaceutics and Biopharmaceutics 2002, 54, 59–64. [https://doi.org/10.1016/S09396411(02)00047-4]
  • 76. Trivedi, A.; Sud, V.K. Grain characteristics and engineering properties of coal ash. Granular Matter 2002, 4, 93–101. [https://doi.org/10.1007/s10035002-0114-6]
  • 77. Werther, J.; Ogada, T. Sewage sludge combustion. Progress in Energy and Combustion Science 1999, 25, 55–116. [https://doi.org/10.1016/S03601285(98)00020-3]
  • 78. Rahman, M.M.; Nor, S.S.M.; Rahman, H.Y.; Sopyan, I. Effects of forming parameters and sintering schedules to the mechanical properties and microstructures of final components. Materials and Design 2012, 33, 153–157. [https://doi.org/10.1016/j. matdes.2011.07.019]
  • 79. Mueller, A.; Sokolova, S.N.; Vereshagin, V.I. Characteristics of lightweight aggregates from primary and recycled raw materials. Construction and Building Materials 2008, 22, 703–712. [https://doi. org/10.1016/j.conbuildmat.2007.06.009]
  • 80. Rogowska, D. Biofuel production as part of a circular economy. Nafta-Gaz 2018, LXXIV, 156–163.
  • 81. Kalmykova, Y.; Sadagopan, M.; Rosado, L. Circular economy – from review of theories and practices to development of implementation tools. Resources, Conservation and Recycling 2018, 135, 190–201. [https://doi.org/10.1016/j.resconrec.2017.10.034]
  • 82. Malinauskaite, J.; Jouhara, H.; Czajczyńnska, D.; Stanchev, P.; Katsou, E.; Rostkowski, P.; Thorne, R.J.; Colon, J.; Ponsa, S.; Al-Mansour, F.; Anguilano, L.; Krzyżyńska, R.; Lopez, I.C.; Vlasopoulos, A.; Spencer, N. Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 2017, 141, 2013–2044. [https://doi.org/10.1016/j. energy.2017.11.128]
  • 83. Heshmati, A. A review of the circular economy and its implementation. In: IZA Discussion Paper Series, Paper No. 9611, Bonn, Germany, 2015, p. 61. [https://doi.org/10.1504/IJGE.2017.089856]
  • 84. Rada, E.C.; Cioca, L. Optimizing the methodology of characterization of municipal solid waste in EU under a circular economy perspective. Energy Procedia 2017, 119, 72–85. [https://doi.org/10.1016/j. egypro.2017.07.050]
  • 85. Millward-Hopkins, J.; Purnell, P. Circulating blame in the circular economy, The case of wood-waste biofuels and coal ash. Energy Policy 2019, 129, 168– 172. [https://doi.org/10.1016/j.enpol.2019.02.019]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be38732a-bbd7-43f4-8b0e-befa2ae91782
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.