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1. Introduction

Lithium-ion cells have been widely applied to many portable con-
sumer electronics, such as cell phones, laptops, digital cameras and 
so on [8]. Compared with other secondary batteries, Lithium-ion cells 
perform a large number of advantages, for example, no memorability, 
high nominal voltage, long cycle life, low self-discharge rate, high 
energy density and low pollution, etc., all of which make it one of the 
most ideal power sources in the 21th century. The recent trend shows 
that Lithium-ion cells also have a brilliant future in the application of 
electric vehicles, defense industry and power storage for renewable 
energy sources. Cycle life is one of the most significant indices by 
which the performance of Lithium-ion cells can be measured. There-
fore, how to accurately predict cycle life becomes crucially necessary 
for the popularization of Lithium-ion cells, especially for the Lithium-

ion cells of special uses (such as the spacecraft power system), where 
imprecise prediction of cycle life can lead to consequences ranging 
from operation impairment to even catastrophic failures [9]. 

In many cases, an underlying degradation process can be traced to 
product failure [14]. Capacity is often treated as a key indicator measur-
ing the performance degradation of Lithium-ion cells [3]. Many stud-
ies have focused on the cycle life prediction of Lithium-ion cells based 
on the capacity fading models. Meng et al. [13] studied the capacity 
fading curves of Lithium-ion power cells at a certain constant tempera-
ture, and then used the Weibull distribution to conduct the cycle life 
prediction. Wang et al. [18] investigated the cycling-induced capacity 
fading mechanisms in Lithium-ion cells and proposed a linear regres-
sion model to quantify the capacity loss over cycles. After studying 
the accelerated degradation test of numerous LiFePO4 cells, Lam and 
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Nowadays, the extensive use of Lithium-ion cells requires an accurate life prediction model. Failure of Lithium-ion cells usually 
results from a gradual and irreversible capacity fading process. Experimental results show that this process is strongly affected 
by temperature. In engineering applications, researchers often use the regression-based approach to model the capacity fading 
process over cycles and then perform the cycle life prediction. However, because of neglecting temperature influences, this classic 
method may lead to significant prediction errors, especially when cells are subject to complex temperature profiles. In this paper, 
we extend the classic regression-based model by incorporating cell temperature as a predictor. Two effects of temperature on cell 
capacity are considered. One is the positive effect that high temperature lets a cell discharge more capacity in a cycle; The other is 
the negative effect that high temperature accelerates cell capacity fading. A cycle life test with six cells are conducted to valid the 
effectiveness of our method. Results show that the improved model is more suitable to capture the dynamics of cell capacity fading 
path under complex temperature profiles.
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Obecne szerokie zastosowanie ogniw litowo-jonowych wymaga stworzenia trafnego modelu prognozowania ich trwałości. Uszko-
dzenia ogniw litowo-jonowych zazwyczaj wynikają ze stopniowego i nieodwracalnego procesu utraty pojemności. Wyniki do-
świadczeń pokazują, że na ten proces silny wpływ wywiera temperatura. W zastosowaniach inżynieryjnych, naukowcy często 
wykorzystują podejście oparte na regresji do modelowania procesu utraty pojemności w poszczególnych cyklach by następnie 
dokonać prognozy trwałości w danym cyklu pracy. Jednakże, ta klasyczna metoda nie bierze po uwagę wpływu temperatury, co 
może prowadzić do znacznych błędów predykcji, w szczególności, gdy ogniwa pozostają pod wpływem złożonych profili tempe-
raturowych. W prezentowanym artykule, rozszerzono klasyczny model oparty na regresji poprzez włączenie temperatury ogniwa 
jako czynnika prognostycznego. Przeanalizowano dwa rodzaje wpływu temperatury na pojemność ogniw. Z jednej strony, wysoka 
temperatura oddziałuje pozytywnie pozwalając ogniwu na uzyskanie większej pojemności w danym cyklu; z drugiej strony jest to 
wpływ negatywny, ponieważ wysoka temperatura przyspiesza utratę pojemności ogniwa. Przy użyciu sześciu ogniw, przeprowa-
dzono badanie trwałości w danym cyklu pracy w celu potwierdzenia skuteczności naszej metody. Wyniki pokazują, że udoskonalo-
ny model pozwala lepiej uchwycić dynamikę ścieżki utraty pojemności ogniwa w warunkach złożonych profili temperaturowych.

Słowa kluczowe:	 Ogniwa litowo-jonowe, utrata pojemności, złożone profile temperaturowe, prognozowanie 
trwałości, ocena niezawodności.
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Bauer [10] proposed an empirical linear model describing the capacity 
fade, and the Arrhenius function was used to describe the fading rates 
under different temperatures. Besides the linear model, there are some 
studies centering on capacity fading models for different Lithium-ion 
type cells, such as the radical and linear model [19] and the quadratic 
and linear model [15].

These studies mentioned above, however, are mainly conducted 
based on the cycle life tests under one or more deterministic tempera-
ture levels, in which the high-precision temperature chamber and rigid 
data acquisition methods are required. Unlike the laboratory testing 
condition, cells in the field-use condition are usually run under com-
plex temperature profiles. Previous researches indicate that the capac-
ity fading process of Lithium-ion cells is significantly influenced by 
temperature [5, 7, 10]. In [10], capacity fading of Lithium-ion cells can 
be divided into true capacity fading and temporary capacity loss. True 
capacity fading leads to permanent capacity loss as a result of lithium 
ion and active material consuming, where high temperatures will ac-
celerate the fading rate. On the other hand, temporary capacity loss 
is due to the temperature drop in a certain cycle, which is somewhat 
recoverable if the temperature goes back. A more accurate capacity 
fading model can be obtained by considering these temperature effects, 
especially for the cells operating under field-use conditions.

However, because of the difficulty in mod-
eling the complicated temperature effects, the 
existing papers regarding capacity fading mod-
eling or cycle life prediction under complex tem-
perature profiles are very rare. In most of them, 
the classic regression-based approach [6] is 
adopted, which assumes that field conditions are 
deterministic or to simply use the mean value of 
temperatures while ignore their variability. This 
approach may result in significant prediction er-
rors. For predicting the cycle life of Lithium-ion 
cells without the temperature chamber, this paper 
proposes a cycle life prediction method consid-
ering complex temperature profiles, including a 
cycle life test plan and an improved capacity fad-
ing model. 

In our test, cells experience ambient tempera-
ture that continuously varies at all times. It will lead to the variance of 
cell capacity. The variance contains abundant information about cycle 
life and the relationship between cycle life and temperature. If we can 
effectively mine the information from the immense performance data 
using data modeling methods, the cycle life of Lithium-ion cells can 
be predicted accurately.

In this paper, firstly, the cycle life test plan for Lithium-ion cells 
under complex temperature profiles is introduced. Then, the classic 
regression-based life prediction method which ignores temperature 
effects is reviewed. Based on the classic method, we establish a more 
accurate capacity fading model, by taking into account the effects of 
temperature on both the actual capacity fading and the temporal ca-
pacity loss. Using the data acquired from the cycle life test, the param-
eters of the model are estimated. At last, the cycle life of this type of 
Lithium-ion cells is predicted.

2. Experimental

2.1.	 Testing procedures

In the cycle life test, 6 LiFePO4 18650 cells, which are indexed 
as Cell #1, Cell #2,· · ·, Cell #6 respectively, are used to charge and 
discharge repetitively. The parameters setup of these cells is listed in 
Table 1.

Fig. 1(a) and Fig. 1(b) show the scheme and photograph of our 
Lithium-ion cell cycle life test system, respectively. The system main-

ly consists of a personal computer, an ACCEXP battery test system 
and a temperature acquisition instrument 18B20 with some thermo-
couples. The PC communicates with the ACCEXP battery test system 
that monitors the parameters of our interest, including current, voltage 
and capacity. The temperature measurement of each cell is performed 
by the thermocouples. And the temperature data are acquired and sent 
to the PC by the temperature acquisition instrument 18B20. Through 
the PC, we can set the charge/discharge algorithm for the ACCEXP 
battery test system.

According to the constant current/voltage charge and constant 
current discharge regime, cells are simultaneously tested as the fol-
lowing steps. (1) Charge with the constant current of 1C until the volt-
age reaches the end of charge voltage, then with the constant voltage 

Table 1.	 Parameters setup for LiFePO4 18650 cell

Parameter Value Unit

Rated capacity 2000 mAh

Nominal voltage 3.7 V

End of charge voltage 4.2 V

End of discharge voltage 2.75 V

Fig. 1. Lithium-ion cells cycle life test platform

a) b)

Fig. 2. Capacity fade and temperature variation versus cycle
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of until the current declines to C/100; (2) Stand by for 30 minutes; (3) 
Discharge the constant current of 1C until the voltage declines to the 
end of discharge voltage; (4) Stand by for 30 minutes; (5) Repeat the 
steps from (1) to (4) until the cycle number reaches 100.

For a 2000 mAh cell, the 1C corresponds to a current of 2000mA. 
During the test, the temperature of each cell is measured every 10 
seconds. Then, we can get the average Celsius temperature of each 
cell in each cycle. Because these cells are exposed to the ambient 
temperature, cell temperature varies irregularly with the ambient con-
ditions over time, which is defined as complex temperature profiles 
in this paper. 

The test results are illustrated in Fig. 2, it is clear that cell capacity 
fades gradually over cycles and correlates strongly with temperature. 
It is noted that the temperature signals after 75th cycle are unavailable 
due to failure of the temperature acquisition instrument.

2.2.	 Failure mechanism analysis

Capacity fading is one of the main failure modes for secondary 
cells. Ideally, in addition to the reaction of the Lithium ion shuttling 
between two electrodes, there are no side reactions inside the cell. 
Thus the total amount of Lithium ion remains unchanged and cell ca-
pacity will not fade. However, during calendar storage or charge/dis-
charge cycles, cell capacity fades gradually due to some unexpected 
side reactions, such as oxidation of anode materials, lithium corrosion 
on cathode, electrolyte decomposition and solid electrolyte interface 
(SEI) formation, among which the SEI formation usually dominates. 
During cycle life tests, the charge/discharge current produces diffu-
sion induced stress and triggers cracks on the graphite particle. Con-
sequently, it will lead to the SEI formation on the cracked surfaces, 
which will consume the active Lithium-ion. This diffusion-induced-
stresses failure mechanism usually makes capacity fade linearly over 
cycles [1, 10, 18].

3. Classic cycle life prediction method

3.1.	 Capacity fading model ignoring temperature effect

As cell temperature varies in a narrow range in the test, classic 
cycle life prediction methods often assume that temperature has no 
effect on the capacity fading process. In this case, we can regard the 
capacity fading data in Fig. 2 as a case of constant stress degradation 
tests, and the regression-based model is often used to handle this type 
of degradation data [6]. In the previous literature [1, 10, 18], capacity 
fading of Lithium-ion cells is generally assumed to follow a linear 
trend with cycles, namely:

	 c n a b n( ) = − ⋅ , 	 (1)

where the intercept a and slope b are unknown parameters, c(n) is the 
cell capacity at nth cycle.

The estimators of model parameters for each cell can be obtained 
with the linear regression techniques. The end of life (EOL) for Lithi-
um-ion cell is often defined as the number of charge/discharge cycles 
before cell capacity falls below 80% of its rated capacity [13]. Thus 
the failure threshold is set to be 2000×80% = 1600mAh. Then we can 
calculate the cycle life T of each cell, respectively. Because T is an 

extrapolated life rather than the actual value, we call it pseudo life. 
The results of parameter estimation and pseudo life for each cell in the 
test are shown in Table 2. Take Cell #6 as an example, the cycle life 
extrapolation method is illustrated in Fig. 3.

3.2.	 Life prediction ignoring temperature effect

Reliability is an important tool in lifetime prediction for compo-
nents especially in the electronic industry [16]. Evaluating the reli-
ability indices such as the MTTF (mean time to failure) and percentile 
of the cycle life distribution, is an essential task in cycle life prediction 
for Lithium-ion cells. What distribution the cycle life follows should 
be known before conduct the prediction. The Kolmogorov-Smirnov 
(K-S) goodness-of-fit test is used to test the goodness of some typical 
lifetime distributions [12]. Take a sample x1,⋯xn,  from a certain type 
of distribution F and consider the two hypotheses:

	 H F x F x
H F x F x

0 0

1 1

:
:

( ) = ( )
( ) = ( )


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


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where F is the empirical cumulative distribution function of the sam-
ple and F0(x) is a given cumulative distribution function. 

The K-S statistic is:
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Then we compare Dn with Dn
α , which is the cutoff value for de-

termining whether Dn is significant, where α is the significance level. 
If D Dn n< α, we accept the null hypothesis H0. Otherwise, we accept 
the alternative hypothesis H1. The adequacy of the pseudo life distri-
bution is judged by comparing Dn calculated for the Weibull, Normal, 
Log-normal, Exponential and Gamma distribution. The K-S statistic  
for the five distributions are 0.182, 0.204, 0.232, 0.519, 0.212 respec-
tively, and the cutoff value Dn

α=0.52 for n=6 and α=0.05. Results 
show that the Weibull has the minimum Dn, indicating that Weibull 

is better than the other four distributions for fitting 
these pseudo lives. Fig. 4 depicts the process of clas-
sic regression-based cycle life prediction method.

The probability density function f(t), cumulative 
distribution function F(t) and reliability function R(t) 
of the Weibull distribution are given as follows:

Fig. 3. Capacity fade plotted as a linear function of cycles

Table 2.	 Parameter estimation and pseudo life (classic)

Cell#1 Cell#2 Cell#3 Cell#4 Cell#5 Cell#6

α 1918.7 1894.3 1893.7 1920.8 1908.0 1906.5

b 3.3 3.0 3.9 3.0 2.3 2.7

T 97.8 98.8 75.9 107.6 131.1 111.7
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where η is the scale parameter and m is the shape parameter.
The Maximum Likelihood Estimate (MLE) of the Weibull param-

eters are: η̂ = 110.91 and m̂=6.95. Some indices of interest like MTTF 
(Mean time to failure) and Tq (the 100qth percentile of lifetime dis-
tribution) can be obtained through (4). Because the sample in the test 
is small, we utilize the Parametric Bootstrap method to perform the 
interval estimate of these indices. For more information about Para-
metric Bootstrap method, see reference [4]. The point estimation and 
interval estimation with 80% confidence of MTTF and Tq are shown 
in Table 3.
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However, the classic cycle life prediction method has some draw-
backs because it ignores the temperature effects on Lithium-ion cells. 
From Fig. 2, we can see that the temperature cycles and capacity 
cycles are correlated. In Fig. 3, although the cell’s capacity dropped 
below 1600mAh in the 94th cycle, it went back above 1700mAh in 
the next cycle due to temperature rising. Thus, besides cycle number, 
temperature is another factor that strongly affects capacity variation. 
In reality, the ambient environment and the battery’s charge/discharge 
work together to cause its temperature fluctuation. Meanwhile, the 
varying temperature can in turn affect the reactions in the charge/dis-
charge process and lead to the capacity fluctuation. 

To study the correlation between temperature and cell capacity di-
rectly, we let the measured capacity in each cycle plus the degradation 
term b ∙ n for compensating the cycle caused capacity variation. Then, 
the Pearson correlation test is conducted between the capacity after 
compensation and the temperature measured in the test. The correla-
tion coefficients for the six cells are 0.94, 0.96, 0.92, 0.94, 0.85 and 
0.95, respectively. Results indicate that the linear correlation between 
cell capacity and temperature is significant. To improve the accuracy 
of prediction, an improved cycle life prediction method is proposed 
by adding the temperature effects into the capacity fading model in 
Section 4.

4. Improved cycle life prediction method

4.1.	 Capacity fading model considering temperature effects

Numerous researches indicate that the capacity fading process of 
Lithium-ion cells is strongly affected by temperature. According to 
[11] and [15], the effect of temperature on the performance of lithium-
ion cells, on the one hand, is positive. High temperature enhances 
the activities of lithium ions and decreases internal resistance, which 
makes a cell release more capacity in a certain cycle. On the other 
hand, the effect is negative. It means that high temperature causes 
faster side reactions which bring permanent damage to cells. Mean-
while it accelerates capacity fade and shortens cell life. In the fol-
lowing parts, both of the two effects are considered in the improve 
regression model.

Firstly, we focus on the positive temperature effect. Based on the 
analysis in section 3.2, if we ignore the cycle caused capacity fade, the 
linear correlation between cell capacity and temperature is significant. 
Thus, the relationship between cell capacity and temperature can be 
modeled by a linear function:

	 C temp temp( ) = + ⋅α β 	 (5)

where C(temp) is the capacity a cell can discharge at temperature 
temp, α and β are unknown parameters. The slope β in (5) is positive, 
indicating that enhancing temperature will make a cell discharge more 
capacity in a cycle. 

In practice, the actual capacity of a new cell fades linearly over 
charge/discharge numbers. As a result, the relationship between cell 
capacity and cycle number should be introduced into (5). Here we as-
sume that the intercept term α accounts for the cycle caused capacity 
loss. Let Δαi be the degradation increment between the ith cycle and 
the (i−1)th cycle, namely,

	 ∆α α αi i i i= − =−1 1 2, , , ,	 (6)

where α0 is the initial value of α for a totally new cell.
Now, the negative effect of temperature can be taken into account. 

As high temperature accelerates cell capacity fade, it is reasonable to 
use an Arrhenius function to model the relationship between tempera-
ture and capacity fading rate. Then, Δαi can be expressed as,

	 ∆α ϕ
η

i
itemp

= − +
+












exp

273 15.
,	 (7)

where A is unknown parameter, tempi is the average Celsius tempera-
ture in the ith cycle, φ and η are unknown parameters.

According to the cumulative exposure theory, the cumulative deg-
radation value of  can be obtained approximately by summing the 

Fig. 4. Pseudo life distribution based on the Weibull distribution

Table 3.	 Cycle life prediction results (Classic)

MTBF T0.9 T0.8 T0.5

103.2 80.2 89.4 105.2

[94.3,112.4] [69.1,97.2] [79.6,103.4] [96.0,114.4]
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degradation increment. Then, the remaining value of α after n charge/
discharge cycles can be expressed as:

	 α α αn
i

n
i= +

=
∑0

0
∆ ,	 (8)

Then, a new capacity fade model under complex temperature pro-
files can be expressed as:

	 C tempn n n= + ⋅α β .	 (9)

Substituting (7) and (8) into (9), we can obtain:

	 C
temp

tempn
i

n

i
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
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
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η
β0

0 273 15
exp

.
,	 (10)

where Cn is the capacity a cell discharge in the nth cycle, tempn is the 
temperature in the nth cycle, and {temp1, temp2, tempn} denotes the 
complex temperature profiles the cell experiences from the 1st cycle 
to the nth cycle.

The nonlinear least square method is used to estimate the param-
eters in (10) for the six 6 cells respectively, and the results are shown 
in Table 4.

Substituting these estimators and the corresponding tempera-
ture profiles {temp1, temp2, temp75} (as only temperatures before the 
75th cycle are available) into (10), we can predict the capacity fading 
curves under complex temperature profiles. Fig. 5 compares the meas-
ured capacities and the predicted values for the six cells. It is clear that 
the measured capacities are consistent with the predicted value quite 
well. From the criteria aim to minimize the sum of the squares of the 
errors, the improved model is a more accurate parametric model than 
the classic one.

4.2.	 Model cross-validation

To further demonstrate the superiority of the improve capacity 
fading model over the classic one, the cross-validation method would 
be conducted in this section. In the cross-validation, we used 5 cells’ 
data to build the model, and then validate it using the remaining one 
cell. The main steps are as follows: (1) Estimate the 5 cells’ model 
parameters, respectively; (2) Calculate the mean values of the param-
eter estimators in (1); (3) Substitute the mean parameter estimators 
into the corresponding capacity fading model, and compare the results 
with the measured capacity of the remaining one cell. The results of 
cross-validation for the two models are illustrated in Fig. 6, respec-
tively. 

It is observed that for most of these cells (expect Cell #3), the im-
proved model is more suitable to capture the dynamics of cell capacity 

fading path under complex temperature profiles. Notice that, for 
Cell #3, both the classic model and the improved one underes-
timate its capacity fading rate. This may be due to the fact that, 
capacity of Cell #3 fades apparently faster than others, while the 
predicted model in cross-validation reflects the mean perform-
ance of the other five cells. To directly test the reasonability of the 
proposed model, the mean absolute error between the actual ca-
pacity and the predictions for each cell is calculated. The obtained 
results are summarized in Table 5. From Table 5, we can find that 
the improved model is more accurate than the classic regression 
model (except Cell #3), which is consistent with Fig. 5. 

Table 4.	 Parameter estimation of the improved capacity fade model

Cell#1 Cell#2 Cell#3 Cell#4 Cell#5 Cell#6

α0 1580.6  1642.4  1578.4  1670.8  1647.4  1554.1

φ 8.9    10.2    11.2    10.9    10.9    11.0

η −2255.9 −2653.9   −2892.4  −2938.3  −2907.1 −2952.2

β 14.9    11.8      14.1     10.5    12.0     15.3

Fig. 5.	 Capacity fade plotted using the improve model considering tempera-
ture effect

Fig. 6. Cross-validation results
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4.3.	 Life prediction considering temperature effect

Using (10) we can predict the cell capacity fading path under a 
given complex temperature profile . Now we set the temperature to be 
deterministic, namely temp1 = temp0, for i=1,2,⋯. Then, at the deter-
ministic temperature temp0, the theoretical measured capacity of a cell 
after n charge/discharge cycles can be predicted as:

	 C n temp
temp

n temp,
.0 0

0
0273 15

( ) = − +
+












⋅ + ⋅α ϕ

η
βexp .  (11)

Generally, the rated capacity of Lithium-ion type cells refers 
to the capacity a new cell can discharge at room temperature, say  
temp1 = 25°C. Thus, an accurate definition of EOL (end of life) is 
the number of cycles when the capacity a cell can discharge at 25°C 
crosses the threshold value Df = 0.8Crated. However, C(n, temp0) in 
(11) refers to the capacity a cell can discharge at temperature temp0 
after n cycles. In order to determine whether the cell really fails, we 
should firstly convert C(n, temp0) to the equivalent capacity at room 
temperature, which is defined as room-temperature-capacity and de-
noted as Cr(n, temp0).

According to (5), the difference between a cell’s capacity at tempr 
and temp0 is:

	 ∆C temp temp temp tempr r, 0 0( ) = ⋅ −( )β 	 (12)

The equivalent room-temperature-capacity for (11) can be ex-
pressed as:

	 C n temp C n temp temp tempr
r, ,0 0 0( ) = ( ) + ⋅ −( )β ,	 (13)

where C(n, temp0) is defined in (11) to denote the theoretical measured 
capacity of a cell after n cycles at deterministic temperature temp0.

Using the new definition of EOL and (13), we can predict a Lith-
ium-ion cell’s cycle life under any specified temperature. The cycle 
life of a cell subject to deterministic temperature temp0 can be calcu-
lated by:

	 T n C n temp Dtemp
r

f0 0= ( ) ={ }| , .	 (14)

Note that our objective is to predict the life of these Lithium-ion 
cells under complex temperature profiles. Here, we use the mean 
value of the temperatures in the cycle life test to represent the com-
plex temperature profiles. The mean temperature in our test is 23°C, 
namely let temp0 = 23°C. Under this temperature, the pseudo life of the 
six cells is predicted using (14) respectively. The results are shown in 
Table 6. We can use these pseudo lives to represent the cells’ cycle life 
under complex temperature profiles approximately.

We still use the Weibull, Normal, Log-normal, Exponential and 
Gamma distribution as the given distributions to conduct the K-S 

goodness-of-fit test. The K-S statistic   Dn are 0.186, 0.178, 
0.209, 0.515, 0.186, respectively. This time, we see that the Nor-
mal distribution has the smallest Dn rather than the Weibull dis-
tribution. The probability density function f(t), cumulative distri-
bution function F(t) and reliability function R(t) of the Normal 
distribution are given as follows:
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where μ is the mean, σ is standard deviation and Φ(∙) is the cumulative 
distribution function of a standard normal distribution.

Using the technique of MLE, we can obtain the estimators of the 
Normal parameters: η̂ = 109.75 and σ̂ = 109.75. The corresponding 
indices MTTF and Tq can be calculated by (4), too. The Parametric 
Bootstrap method is also used to obtain the confidence intervals of 
these indices. Table 7 gives the results of point estimation and 80% 
confidence intervals for MTTF and Tq using the improved cycle life 
prediction methods.

Fig. 7 compares the reliability plots of Lithium cells using classic 
method (blue) and the improve one (red). The 80% confidence inter-
vals are obtained using the Parametric Bootstrap method and plot-
ted in dotted lines. Compared with the improved method, the classic 
method underestimates the cell’s reliability. The distribution type of 
cycle life also changes after considering temperature effects. In practi-
cal conditions, the amplitudes of temperature fluctuation may be more 
drastic than that in our test. In this case, ignoring temperature effects 
will lead to more significant prediction errors.

5. Conclusion 
Many papers have been published on Lithium-ion cell life pre-

diction, but they mainly focus on the laboratory settings where cells 
experience deterministic temperatures. In some field conditions, cells 
are tested without temperature controllers. In this case, cell capacity 

Table 7.	 Cycle life prediction results (Improved)

MTBF T0.9 T0.8 T0.5

109.3 85.5 93.8 109.7

[99.5,118.9] [72.7,99.1] [83.1,105.5] [100.0,119.4]

Table 5.	  Mean predicted error of each cell (unit: mAh)

Cell#1 Cell#2 Cell#3 Cell#4 Cell#5 Cell#6 Total

Improved 9.86 9.70 59.68 20.09 26.26 9.40 135.00 

Classic 30.63 36.59 51.26 35.77 38.07 33.59 225.90 

Table 6.	 Pseudo life under complex temperature profiles

Cell#1 Cell#2 Cell#3 Cell#4 Cell#5 Cell#6

T23°C 103.2 102.2 79.4 132.6 123.7 117.5

Fig. 7.	 Comparison of Lithium cell’s reliability between classic method (blue) 
and improved method (red).
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fades over time and is strongly affected by the temperature variations. 
In this paper, we extend the classis cycle life prediction method based 
on a regression model by considering the temperature effects. Com-
parisons are conducted between the classic and improved method, re-
sults show that the improved capacity fading model is more suitable to 
capture the characteristics of cell capacity fading paths under complex 
temperature profiles. With the advantages of low cost and easy popu-
larization, the method of testing and analyzing cycle life in this paper 
can be conducted in field conditions and does not need to control the 
temperature accurately. In addition, the temperature of Lithium-ion 
cells in operation is always time-varying, so the model also provides 
a fundamental theory for the remaining useful life (RUL) prediction 
of Lithium-ion cells. The method proposed in this paper is a general 
method that can be applied to other batteries.

In the future work, two possible issues should be studied:

Charge/discharge rates is another key parameter that affects (1)	
Lithium-ion cell capacity fading processes. The model will be 
more complicated if both current rate and temperature are in 
complex profiles.
Since the temperature in our test varies in a narrow range, the (2)	
accelerated effect of high temperature on capacity fade is not 
significant enough. To verify the accelerated effect of high 
temperature, an accelerated degradation test under several 
temperature levels should be conducted.
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