PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Semiempirical model of the acoustics of a supersonic jet upon collision with a perpendicular wall

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents a semiempirical model for estimating the acoustic loads generated by a supersonic jet colliding with a rigid perpendicular wall, expanding on traditional methodologies used to assess rocket jet acoustics near the launch structure. Unlike conventional approaches, the proposed model eliminates the need for additional algorithms to describe the flow-surface interaction zone. Instead, it reconfigures acoustic sources attributed to the free jet. Contributions from the undisturbed jet segment, the interaction zone, and acoustic reflection are compared as a function of the nozzle-wall distance. The simulation highlights the dominant role of reconfigured sources in increasing sound levels when the jet interacts with a nearby surface. This methodology is particularly relevant for modeling the acoustic environment during rocket lift-off and can support the engineering design of space vehicles.
Słowa kluczowe
Rocznik
Strony
66--79
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wzory
Twórcy
  • Institute of Hydromechanics of the National Academy of Sciences of Ukraine, 8/4 Marii Kapnist Street, Kyiv 03057, Ukraine
  • State Enterprise MK Yangel Pivdenne Design Bureau, 3 Kryvorizka Street, Dnipro 49008, Ukraine
Bibliografia
  • [1] Tam C, Golebiowski M, Seiner J. On the two components of turbulent mixing noise from supersonic jets. In: Aeroacoust Conf. State College, PA: Am Inst Aeronaut Astronaut; 1996. https://doi.org/10.2514/6.1996-1716.
  • [2] Nonomura T, Honda H, Nagata Y, Yamamoto M, Morizawa S, Obayashi S, et al. Plate-angle effects on acoustic waves from supersonic jets impinging on inclined plates. AIAA J. 2016;54(3):816-827. https://doi.org/10.2514/1.j054152.
  • [3] Kandula M. Prediction of turbulent jet mixing noise reduction by water injection. AIAA J. 2008;46(11):2714-2722. https://doi.org/10.2514/1.33599.
  • [4] Haynes J, Kenny R. Modifications to the NASA SP-8072 distributed source method II for Ares I lift-off environment predictions. In: 15th AIAA/CEAS Aeroacoust Conf (30th AIAA Aeroacoust Conf ). Am Inst Aeronaut Astronaut; 2009. https://doi.org/10.2514/6.2009-3160.
  • [5] Batutina TY, Oliynik VN. Napivempirychne otsiniuvannia akustychnykh navantazhen na holovnu chastynu rakety pry nestandartnii konfihuratsii startovykh sporud [Semiempirical assessment of acoustic loads on the rocket head with a non-standard configuration of launch facilities]. BTSNUKPhM. 2023;(2):84-87. [in Ukrainian]. https://doi.org/10.17721/1812-5409.2023/2.9.
  • [6] Kudryavtsev VV. Acoustic environment at jet interaction with a plate. In: Inter.noise 2000. 29th Int Congr Exhibit Noise Control Engineering. Nice, France: SFA; 2000.
  • [7] Ffowcs Williams JE. The noise from turbulence convected at high speed. Philosophical Trans Roy Soc Lond A. 1963;255(1061):469-503. https://doi.org/10.1098/rsta.1963.0010.
  • [8] Lighthill MJ. Jet noise. AIAA J. 1963;1(7):1507-1517. https://doi.org/10.2514/3.1848.
  • [9] Eldred KM. Acoustic loads generated by the propulsion system. Washington, DC: NASA; 1971. Rep No.: NASA-SP-8072.
  • [10] Sutherland LC. Progress and problems in rocket noise prediction for ground facilities. In: 15th Aeroacoust Conf. Long Beach, CA: Am Inst Aeronaut Astronaut; 1993. https://doi.org/10.2514/6.1993-4383.
  • [11] Plotkin K, Sutherland L, Vu B. Lift-off acoustics predictions for the Ares I launch pad. In: 15th AIAA/CEAS Aeroacoust Conf (30th AIAA Aeroacoust Conf ). Miami, FL: Am Inst Aeronaut Astronaut; 2009. https://doi.org/10.2514/6.2009-3163.
  • [12] Sutton GP, Biblarz O. Rocket propulsion elements. New York: John Wiley & Sons; 2001.
  • [13] Varnier J. Experimental study and simulation of rocket engine freejet noise. AIAA J. 2001;39(10):1851-9. https://doi.org/10.2514/2.1199.
  • [14] Lubert CP, Gee KL, Tsutsumi S. Supersonic jet noise from launch vehicles: 50 years since NASA SP-8072. J Acoust Soc Am. 2022;151(2):752-791. https://doi.org/10.1121/10.0009160.
  • [15] Gee KL. A tale of two curves and their influence on rocket and supersonic jet noise research. J Acoust Soc Am. 2021;149(4):2159-2162. https://doi.org/10.1121/10.0003938.
  • [16] James MM, Salton AR, Gee KL, Neilsen TB. Comparative analysis of NASA SP-8072’s core length with full-scale rocket data. Trans Japan Soc Aeronaut Space Sci. 2016;14(ists30):Po. https://doi.org/10.2322/tastj.14.po_2_17.
  • [17] Horvay G, Nagamatsu H. Supersonic jet noise. In: 8th Aerospace Sci Meet. New York: Am Inst Aeronaut Astronaut; 1970. https://doi.org/10.2514/6.1970-237.
  • [18] Smith WO III. An empirical and computational investigation into the acoustical environment at the launch of a space vehicle. Auburn, AL: Auburn Univ; 2013.
  • [19] James MM, Salton AR, Gee KL, Neilsen TB, McInerny SA, Kenny RJ. Modification of directivity curves for a rocket noise model. In: Proc Mtgs Acoust. Kansas City, MO: Am Soc Acoust; 2014. https://doi.org/10.1121/1.4870986.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be2af1f4-9466-4d58-8caa-82eacbff8b9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.