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This paper reports some results of turbulent boundary layer computation. The calculation is made assuming 
that law of the wall is valid throughout the boundary layer. Simple relations are proposed for friction for a smooth 
pipe and a flat plate at zero incidence. The results are compared with recent measurements. Encouraging results 
are obtained for both the cases of flows.  
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1. Introduction 
 

Major efforts have been made, theoretically or empirically, to relate Reynolds’ stresses and the mean 
turbulent flow field but so far the result is not very satisfactory. In this paper, it is shown that the simple law 
of the wall can be used as the only input to solve some problems of turbulent boundary layers. Different 
flows of practical importance are considered for this purpose.  

Prandtl (1933) concluded that the time mean velocity u near the smooth wall must depend upon 
density   and viscosity   of the fluid, the shear stress at the wall w  and on the distance from the wall y. 
Thus, near the smooth wall there is a functional relationship  

 

 , , ,wu u y    .                                                                 (1.1)      

 
 From dimensional analysis the functional relationship can be written in the from  
 
   */ /*u v  f yv  .                                                               (1.2)  

 

 In which the shear velocity * wv     and /    . Introducing */u u v   and *y yv   , 

Eq.(1.2) can be written as  
 

   u f y  .                                                                        (1.3)                     
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 Equation (1.3) is called the law of the wall. Most widely used law of the wall is the logarithmic law 
which has the form  
 

   ln
1

u y B  


                                                               (1.4)                     

 
where  is the von Karman constant and B is the constant of integration. The logarithmic law (1.4) does not 
satisfy the no-slip condition at the wall and the condition of zero-slope of velocity profile at the outer edge of 
the boundary layer. No-slip condition can be satisfied if Spalding’s (1961) formulation for the law of the 
wall is used. Spalding (1961) has given a special form of Eq.(1.3)   
 

          
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  

           (1.5) 

where 

  . , . , .BA e 0 1108 0 4 B 5 5     .                                              (1.6) 
 
 Though no-slip condition is satisfied by Eq.(1.5), the condition of zero-slope of velocity profile at 
the outer edge of the boundary layer is not fulfilled. 

 The unique feature of Spalding’s equation is that it presents y  as a function of u  rather than u  as 

a function of y . These features have made computations using this law of the wall much easier to perform. 
The subsequent calculations will be based on this expression, but the development of the method is 

independent of the specific function ( )f u . The aim of the present paper is to establish some relationship 
between flows resistance and the mean values of velocity components.  
 Figure 1 shows how Eq.(1.5) traces turbulent boundary layer data and pipe flow data. It can be seen 
easily that Spalding’s formulation captures the viscous sub-layer and the so called overlap layer well without 
however describing the good trace of data points in the wake region. It is also observed that Spalding’s 
(1961) law of the wall predicts pipe flow data better than boundary layer data.  
 

 
 

Fig.1. Spalding’s (1961) law compared with the pipe flow and flat plate data. 
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2. Fully developed turbulent pipe flow 
 
 The Reynolds number, Re, for the pipe flow is defined as  
 

  Re HVD



                                                                                       (2.1)                     

 

where the hydraulic diameter H HD 4R , the hydraulic radius HR A P , A is the cross sectional area and P 

is the wetted perimeter. For the case of pipe flow HD 2R where R is the radius of pipe, then 
 

  Re
2VR




.                                                  (2.2)  

 

 The average velocity V through the pipe may be defined in terms of the radial co-ordinate r or wall 
co-ordinate y, where y R r   and dy dr  . The distance y is measured from the wall while r is measured 
from the center of the pipe  
 

     
R R R

2 20 0 0

1 2 2
V 2 r u dr udu uydy

RR R
   
    .                         (2.3)                 

 

 Introducing */u u v  , * /y yv    and * /R Rv    in Eq.(2.3), it becomes 
 

  Re
R R

0 0

2VR 4
4 u dy u y dy

R

 
    

  
                               (2.4)   

 

where  R f    is the value of y  when *cu U v     in which cU  is the velocity on the pipe centerline.  

 Using Spalding’s formulation the first integral of Eq.(2.4) becomes 
 

  ( )
2 2 3 4 5R z

0

A z z z z
u dy e z 1 1

2 2 3 8 30


   

        
   

                (2.5) 

 

where z   . The second integral of Eq.(2.4) will be very cumbersome. It is computed numerically. The 
computed values of two integrals are shown in Fig.2. 
 

 
 

Fig.2. Variation of two integrals. 
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 The Darcy-Weisbach friction factor for a smooth pipe can be written as 
 

  * *
2 2

wH
f2 2 2 2

8gR S v v
f 8 4 4 4C

1 1V V V V
2 2


    

 
,                 (2.6a)  
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where g is the gravitational constant for acceleration, S is the slope, shear velocity * /H wv gR S    , 

w  is the shear stress at the wall and fC  is the coefficient of skin friction.  

 For a value of  , ( )R f    can be calculated from Spalding’s formulation, and then Re can be 
calculated from Eqs (2.4), (2.5) and Fig.2 and finally the friction factor f can be estimated from Eq.(2.6). The 
computed values are compared with the measured data of Swanson et al. (2002) and McKeon et al. (2004) in 
Fig.3.  
 

 
 

Fig.3. Computed friction factor compared with experimental data. 
 
 Substituting the logarithmic law in Eq.(2.3) the average velocity V through the pipe can be 
determined  
 

  * ln
1 3

V v R B
2

      
.                                                         (2.7) 

 
 Combining Eq.(2.7) and Eq.(2.6) the relation between the Reynolds number and friction factor is 
obtained  
 

   . log Re .
1

1 99 f 1 02
f
                                                     (2.8) 
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where constants .0 41   and B 5  are considered. This formula was derived by Prandtl in 1935. Equation 
(2.8) is also plotted in Fig.3. It is observed that Eq.(2.8) differs very much from experimental data. This 
difference may be attributed to the fact that the logarithmic law is not a good approximation for the sub-layer 
and wake region.  
 Prandtl (1935) adjusted the constants of Eq.(2.8) using the experimental data of his student 
Nikuradse (1932). The adjusted equation is given below 
 

   . log Re .
1

2 0 f 0 8
f
  .                                                  (2.9) 

 
 This is Prandtl’s (1935) law of friction for a smooth pipe. The friction factor obtained in the present 
approach is compared with Prandtl’s (1935) law of friction in Fig.4. It is revealed that the friction factor 
computed from the present approach is very much close to Prandtl’s adjusted equation.  
 

 
 

Fig.4. Comparison between two theoretical  Ref  relations. 

 
 Shear stress distribution for fully developed pipe flow 
 

  
 
 w

f uy
1 1

fR





   

 
                                                           (2.10) 

 
where   is the shear stress at any distance y from the wall and w  is the shear stress at the wall. 

 One may subtract the viscous portion of the shear tress l  from it whereby one is left with the 

“turbulent” shear stress t . Thus 
 
  t l                                                                                (2.11)                    
 
where 
 

  
 l w w

du du 1

dy dy f u



 
      


, 
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and consequently 
 

  
 
   

t

w

f u 1
1

f f u






  

  
                                                       (2.12)  

 
/t w   has been computed from Eq.(2.12) using Spalding’s formulation and the results are compared with 

Laufer’s (1954) data in Fig.5. The results are in good agreement with the experimental data.  
 

 
 

Fig.5. Computed shear stress compared with Laufer (1954). 
 
3. Turbulent flow over a flat plate  
 
 Kestin and Persen (1962) deduced the momentum equation for a flow over a smooth flat plate in a 
zero pressure gradient flow  
 

  2* *
*

v dv1 τ τ
v u

ρ y dxy



 

 
  

                                 (3.1)   

 

where x is the downstream distance parallel to the plate. It was assumed      , *u u x y v x f y    only. 

 Upon integrating Eq.(3.1) with respect to y , the shear stress distribution across the boundary layer 
is obtained  
 

     2y* *
w 0

dv dv
τ τ μ u dy μ G u

dx dx


                                   (3.2)                   

 

where      2y

0
G u u dy


    . 

 
 At the edge of the boundary layer 
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  * * as ,  o0 v y u U v  
                           (3.3)   

 

where oy   is the dimensionless boundary layer thickness,   is the dimensionless free stream velocity and 

U  is the free stream velocity. Thus, the wall shear stress  
 

   2 *
w *

dv
 v G

dx
                                                            (3.4)                     

 

where      o
2

y

0
G u dy


    . 

 
 Substituting * /v U   in Eq.(3.4)  
 

     Re  x
U U x

dx d d G d         
.                                    (3.5)      

 
 Upon integrating Eq.(3.5), the local Reynolds number based on the downstream distance x is 
obtained 
 

   Rex 0

U x
G d

   
                                                        (3.6)                     

 

 G   obtained from Spalding’s formulation has the form 

 

   ( )
3 3 4 5 6

z 2
2

A z z z z
G e z 2z 2 2

3 3 4 10 36

 
          

   
              (3.7) 

 
where z   . Consequently Rex will be  
 

   Re
4 4 5 6 7

z 2
x 3

A z z z z
e z 4z 6 6 2z

12 12 20 60 252

 
          

   
        (3.8) 

 

 G   can be approximated explicitly by an exponential curve fit for 20 40    

 
  ( ) .  exp( . )G 8 409 0 475                                                            (3.9) 
 

 G   is plotted as a function of   in Fig.6. In the same figure  G   obtained from the logarithmic law is 

also plotted.  
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Fig.6.  G   as function  . 

 
 Combining Eqs (3.6) and (3.9)  
 
                 Re . exp( . )x 17 703 0 475  , 
 
and consequently, the coefficient of local skin friction  
 

  
.

ln .  Re
w

f 2 22 x

2 0 451
C

1 0 0565U
2 


  


.                                          (3.10) 

 
 The measurements which are going to be used for comparison with Eq.(3.10) were performed by 
Österlund (1999), Österlund et al. (2000); Österlund and Nagib (2000) etc.. Figure 7 shows the comparison. 
It is observed that Eq.(3.10) overestimates the skin friction by approximately 9%. Hence, likewise Prandtl’s 
adjustment of theoretical Eq.(2.8), Eq.(3.10) is adjusted to give a better agreement with Österlund (1999) 
data. A multiplying factor of 0.9179 is introduced to Eq.(3.10) to predict the data with a high degree of 

accuracy (coefficient of determination, .2R 0 997 ). The adjusted equation is given below 
 

  
.

ln .  Re
f 2 2

x

2 0 414
C

0 0565
 


 .                                                  (3.11) 

 
Equation (3.11) is shown in Fig.7. A similar calculation is made using the logarithmic law and the result is 
also shown in Fig.7. It is observed that the calculation of  Ref xC  based on the logarithmic law 

overestimates the skin friction by about 23%. The authors can offer an explanation for this. It is revealed 
from Fig.6 that the value of  G   obtained from the logarithmic law is higher than that obtained from 

Spalding’s law. Consequently, for the same value of Rex , the value of   is lesser for the logarithmic law 
which leads to a higher value of the skin friction in the case of the logarithmic law.    
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Fig.7. Theoretical  Ref xC  relation compared with Österlund (1999). 

 
 Clauser (1956) pointed out that “In almost no case does the turbulent boundary layer have a reliable 
point of origin from which x may be measured. Certainly, experimental data can be interpreted with more 
generality and reliability on the basis of the thickness Reynolds numbers rather than with x -Reynolds 
numbers”.  
 In view of the above, an attempt has been made to establish the relation between the skin friction, 

fC  and the momentum thickness Reynolds number,  Re /oU    . The momentum thickness   is also a 

measure of boundary layer thickness. It has the form 
 

  
*

oy

0 0

u u u u
1 1 dy

U U v

   

 

   
            
  , 

 
and consequently the momentum thickness Reynolds number 
 

  Re  
oy

0

U u
u 1 dy

 
 


 

      
  .                                       (3.12)       

 
 The momentum integral relation for a flat plate (zero pressure gradients) is 
 

  
Re

Ref 2
x

d2
C 2

d
 


.                                                               (3.13) 

 
 Consequently, 
 

   Re
20

1
G d


   

  .                                                           (3.14) 

 

 From Eq.(3.7),  2

1
G 


 can be approximated as  
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     . exp .
2

1
G 0 083 0 404  


. 

 
 Introducing this approximation into Eq.(3.13) one obtains 
 
                         Re . exp .0 205 0 404   . 

 
 Rearranging the above equation  
 

  
.

ln . Re
f 2 2

2 0 326
C

4 878 

 


.                                                                        (3.15) 

 
 Equation (3.15) is compared with the experimental data of Österlund’s (1999) in Fig.8. It is revealed 
that Eq.(3.15) overestimates the skin friction by approximately 9%. Hence, Eq.(3.15) is adjusted to give a 
better agreement with Österlund’s (1999) measurements. Multiplying Eq.(3.15) by a factor of 0.9110 gives 

an exceptionally good fit to the data with the coefficient of determination, .2R 0 999 . The adjusted 
equation is given below 
 

  
.

ln .  Re
f 2

0 297
C

4 878 

 .                                                     (3.16) 

 
 Equation (3.16) is plotted in Fig.8. In a similar way  RefC   is determined using the logarithmic 

law and the result is also shown in Fig.8. Computation based on the logarithmic law overestimates the skin 
friction by about 23%. The cause of deviation of the theoretical value of  RefC   is the same as explained 

before in the case of  Ref xC .  

 

 
 

Fig.8. Theoretical  RefC   relation compared with Österlund (1999). 

 
 Distribution of shear stresses is obtained combining Eqs (3.2) and (3.4)  
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 
 
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G u
1

G

 
    
 
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 .                                                              (3.17)                     

 

 Subtracting  l w f u    from Eq.(3.17)  

 

  
 
   
 

 
t

w

G u 1
1

G f u






  
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                                                     (3.18)                     

 
/t w   has been computed from Eq.(3.18) using Spalding’s formulation for the law of the wall and results 

are compared with Smith’s (1994) data in Fig.9. The result is very encouraging. 
 

 
 

Fig.9. Computed shear stress for zero pressure gradient flow compared with Smith (1994). 
 
4. Conclusion 
 
 Computations of pipe flow and flat plate resistances have been made using Spalding’s law of the 
wall. This law is considered valid throughout the boundary layer. Results show that smooth pipe flow 
problems can be successfully solved through this law of the wall approach.  Calculation of the local skin 
friction for a flat plate shows approximately 9% overestimation.  So, necessary adjustment has been made for 
a better approximation. The proposed Eqs (3.11) and (3.16) are very simple and capable to approximate skin 
friction with high degree of accuracy.   
 A comparison between computed values of shear stress for both the cases of flow reveals that the law 
of the wall approach can also give a clue as to the stress field.  
 
Nomenclature 
 
 A  – cross sectional area of the pipe and constant appearing in Spalding’s law 
 B  – constant appearing in the logarithmic law 

 fC  – coefficient of skin friction, / 22   

 HD  – hydraulic diameter 
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 f  – friction factor 
 P  – wetted perimeter 
 R  – radius of pipe 
 R  – dimensionless radius 
 Re  – Reynolds number 
 HR  – hydraulic radius 

 Rex  – local Reynolds number, /U x   

 Re  – momentum thickness Reynolds number, /U   

 2R  – coefficient of determination 
 r  – radial coordinate 
 S  – pipe slope 
 u  – measured velocity 
 cU  – velocity at the centerline of the pipe 

 U  – free stream velocity 

 u  – non-dimensional velocity (inner variable), */u v  

 V  – average velocity through the pipe 
 x  – flat plate downstream distance 
 y  – distance from the wall 

 y  – non-dimensional wall distance (inner variable), * /yv   

 oy   – non-dimensional boundary layer thickness, * /v   

 z  – equals   
 *v  – shear velocity  

   – boundary layer thickness 
   – equals */cU v  for pipe flow and */U v  for boundary layer 

   – momentum thickness 
   – von Karman constant (= 0.4) 
   – viscosity of the fluid 
   – kinematic viscosity of the fluid, /   
   – density of the fluid 
   – shear stress  
 l  – viscous shear stress 

 t  – turbulent shear stress 

 w  – shear stress at the wall, *
2v  

 
References 
 
Clauser F. H. (1956): The turbulent boundary layer. – Adv. In Appl. Mech., vol.4, pp.1-51. 

Kestin J. and Persen L.N. (1962): The transfer of heat across a turbulent boundary layer at very high Prandtl Numbers. 
– Int. J. Heat Mass Transfer, vol.5, pp.355-371. 

Laufer J. (1954): The structure of turbulence in fully developed pipe flow. – Report 1174, NACA. 

McKeon B.J., Swanson C.J., Zagarola M.V., Donnelly R.J. and Smits A.J. (2004): Friction factor for smooth pipe flow. 
– J. Fluid Mech., vol.511, pp.41-44. 

Nikuradse J. (1932): Gesetzmässikeit der turbulenten strömug in glatten Rohren. – Forschg. Arb. Ing. Wes., 356.  

Österlund J.M. (1999): Experimental Studies of zero pressure - gradient turbulent boundary layer flow. – Ph. D. Thesis, 
Royal Institute of Technology, Stockholm, Sweden.  



Importance of the law of the wall  869 

Österlund J.M., Johansson A.V., Nagib H.M. and Hites M.H. (2000): A note on the overlap region in turbulent 
boundary layers. – Phys. Fluids, vol.12, No.1, pp.1-4. 

Österlund J.M. and Nagib H.M. (2000): Comment on “A note on the overlap region in turbulent boundary layers. – 
Phys. Fluids, vol.12, No.9, pp.2360-2363. 

Prandtl L. (1933): Neuere ergebnisse der turbulenzforschung. – Z. VDI. 77, Nr. 5, pp.105-114. 

Prandtl L. (1935): The mechanics of viscous fluids. – In: W. F. Durand. Aerodynamics Theory, III. 

Smith R.W. (1994): The effect of Reynolds number on the structure of turbulent boundary layers. – Ph. D. Thesis 
Department of Mechanical and Aerospace Engineering, Princeton University.   

Spalding D.B. (1961): A single formula for the law of wall. – J. Appl. Mech., vol.28, Ser. E, pp.455-458. 

Swanson C.J., Julian B., Ihas G.G. and Donnelly R.J. (2002): Pipe flow measurements over a wide range of Reynolds 
numbers using liquid helium and various gases. – J. Fluid Mech., vol.461, pp.51-60. 

 

 

Received: November 24, 2014 

Revised:   October 5, 2015 

 
 


