Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to determine the influence of reclamation on selected soil water properties in soils developed from lignite fly ash, deposited as a dry landfill, twenty years after forest reclamation was initiated. Five soil profiles, classified as technogenic soils (Technosols) within the fly ash disposal site of the Adamów (central Poland) power plant, were selected for this study. Disturbed and undisturbed samples (V=100 cm3) were collected from depths of 5–15 cm and 30–60 in each soil profile. The following physical properties were determined: particle size distribution, particle density, bulk density, soil moisture, hygroscopic water content, and the soil-water potential. Readily available water (RAW; difference of water content at pF=2.0 and at pF=3.7) and total available water (TAW; difference of water content at pF=2.0 and at pF=4.2) were calculated based on soil moisture tension (pF) values. The following chemical properties were determined: soil reaction, total organic carbon, total nitrogen content, carbonate content. Statistical analyses were conducted using the GenStat 18 statistical software package. The soils under study were characterized by very low bulk density, high total porosity, high field water capacity and maximum hygroscopicity. The RAW/TAW ratio values indicate very effective water retention in the soils, thereby ensuring a satisfactory water supply to the plants. However, statistical analysis did not show any clear trends in variability of any determined properties. The small differences in observed outcomes probably resulted from the original variability of the fly ash deposited on the studied landfill. Obtained results show the strong similarity of fly ash derived soils and Andosols in respect of physical and soil-water properties.
Czasopismo
Rocznik
Tom
Strony
95--102
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
autor
- Poznań University of Life Sciences, Poznań, Poland
- Poznań University of Life Sciences, Poznań, Poland
autor
- Poznań University of Life Sciences, Poznań, Poland
autor
- Poznań University of Life Sciences, Poznań, Poland
autor
- Poznań University of Life Sciences, Poznań, Poland
Bibliografia
- 1. Ahmaruzzaman, M. (2010). A review on the utilization of fly ash, Prog Energ Combust, 36, 3, pp. 327-363, DOI: 10.1016/j.pecs.2009.11.003
- 2. Antonkiewicz, J. (2010). Physicochemical properties of industrial waste from landfill, Rocz Glebozn - Soil Sci Ann, 61, 3, pp. 3-12. (in Polish)
- 3. Bender, J. (1995). Reclamation of post-mining areas in Poland, Zesz Probl Post Nauk Roln, 418, 1, pp. 75-86. (in Polish)
- 4. Bielińska, E.J. & Futa, B. (2009). Organic matter effect on biochemical transformations in anthropogenic soils in power plant ash dumping ground, Rocz Glebozn - Soil Sci Ann, 60, pp. 318-326. (in Polish)
- 5. Campbell, D.J., Fox, W.E., Aitken, R.L, & Bell, L.C. (1983). Physical characteristic of sands amended with fly ash, Aust J Soil Res, 21, 2, pp.147-154, DOI:10.1071/SR9830147
- 6. Dorel, L., Roger-Estrade, J., Manichon, H. & Delvaux, B. (2000). Porosity and soil water properties of Carribean volcanic ash soils, Soil Use Manage, 16, pp. 133-140, DOI: 10.1111/j.1475-2743.2000.tb00188.x
- 7. Gajewski, P., Kaczmarek, Z., Owczarzak, W., Mocek, A. & Glina, B. (2015). Selected water and physical properties of soils located in the vicinity of proposed opencast lignite mine ”Drzewce” (middle Poland), Soil Sci Ann, 66, 2, pp. 75-81, DOI: 10.1515/ssa-2015-0022
- 8. Gangloff, W. J., Ghodrati, M., Sims, J.T. & Vasilis, B.L. (2000). Impact of fly ash amendment and incorporation method on hydraulic properties of a sandy soil, Water Air Soil Polut, 19, pp. 231-245, DOI: 10.1023/A:1005150807037
- 9. Gilewska, M. (2004). Biological reclamation of power plant lignite ash dump sites, Rocz Glebozn - Soil Sci Ann, 55, 2, pp. 103-110. (in Polish)
- 10. Gilewska, M. (2006). Utilization of wastes in reclamation of post mining soils and ash dump sites, Rocz Glebozn - Soil Sci Ann, 57, 1/2, pp. 75-81. (in Polish)
- 11. Gilewska, M. & Otremba, K. (2010). Impact of planting technique on reclamation of disposal site of power station incineration ash, Zesz Nauk Uniw Ziel, Inż Środ, 17, 137, pp. 86-93. (in Polish)
- 12. Gilewska, M., Otremba, K. & Kozłowski, M. (2020). Physical and chemical properties of ash from thermal power station combusting lignite. A case study from central Poland, J Elem, 25, 1, 279-295. DOI: 10.5601/jelem.2019.24.4.1886
- 13. Gupta, A.K., Dwivedi, S., Sinhi, S., Tripathi, R.D., Rai, U.N. & Singh, S.N. (2007). Metal accumulation and plant growth performance of Phaseolus vulgaris grown in fly ash amended soil. Bioresource Technol, 98, pp. 3404-3407. DOI:10.1016/j.biortech.2006.08.016
- 14. Hartman, P., Fleige, H. & Horn, R. (2010). Water repellency of fly ash-enriched forest soils from eastern Germany, Eur J Soil Sci, 61, pp. 1070-1078, DOI: 10.1111/j.1365-2389.2010.01296x
- 15. Haynes, R.J. (2009). Reclamation and revegetation of fly ash disposal sites - challenges and research, J Environ Manag, 90, pp. 43-53, DOI:10.1016/j.jenvman.2008.07.003
- 16. IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps, FAO, Rome 2015.
- 17. Jahn, R., Blume, H.P., Asio, V.B., Spaargaren, O. & Schad, P. (2006). Guidelines for Soil Description, FAO, Rome 2006.
- 18. Jala, S. & Goyal, D. (2006). Fly ash as a soil ameliorant for improving crop production: a review, Biores Technol, 97, pp. 1136-1147, DOI:10.1016/j.biortech.2004.09.004
- 19. Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., Hulisz, P., Jankowski, M., Jonczak, J., Łabaz, B., Łachacz, A., Marzec, M., Mendyk, Ł., Musiał, P., Musielok, Ł., Smreczak, B., Sowiński, P., Świtoniak, M., Uzarowicz, Ł. & Waroszewski, J. (2019). Polish Soil Classification, 6th edition - principles, classification scheme and correlations, Soil Sci Ann, 70, 2, pp. 71-97, DOI:10.2478/ssa-2019-0009
- 20. Kaczmarek, Z. (2011). Selected physical and water properties of mineral arable soils situated within the range of the predicted draining cone of the “Tomisławice” lignite opencast mine, Rocz Glebozn - Soil Sci Ann, 62, 2, pp. 154-164. (in Polish)
- 21. Kaczmarek, Z., Gajewski, P., Owczarzak W., Mocek, A. & Glina B. (2015). Physical and water properties of selected heavy soils of various origins, Soil Sci Ann, 66, 4, pp. 191-197, DOI: 10.1515/ssa-2015-0036
- 22. Kaczmarek, Z., Gajewski, P., Owczarzak, W., Glina, B. & Woźniak T. (2017). Physical and water properties of selected soils located in the area of predicted depression cone of “Tomisławice” lignite opencast mine (middle Poland), Polish J Soil Sci, 50, 2, pp. 167-176, DOI: 10.17951/pjss.2017.50.2.167
- 23. Kavouridis, K. (2008). Lignite industry in Greece within a world context: Mining, energy supply and environment, Energy Policy, 36, 4, pp. 1257-1272, DOI:10.1016/j.enpol.2007.11. 017
- 24. Klose, S., Koch, J., Baucker, E. & Makeschin, E. (2001). Indicative properties of fly ash affected forest soil in Northeastern Germany, J Plant Nutr Soil Sci, 164, pp. 561-568, DOI: 10.1002/1522-2624(200110)164:5561::AID-JPLN561>3.0.CO;2-9
- 25. Klute, A. (1986). Water retention: Laboratory methods, in: Klute, A. (Ed.). Methods of Soil Analysis Part 1 Physical and Mineralogical Methods, ASA and SSSA, Madison Wi, pp. 635-662.
- 26. Konstantinov, A.O., Novoselov, A.A. & Loiko, S.V., 2018. Special features of soil development within overgrowing fly ash deposit sites of the solid fuel power plant, Vestnik Tomskogo Gosudarstvennogo Universiteta, Biologiya, 43, pp. 6-24. DOI: 10.17223/19988591/43/1
- 27. Konstantinov, A., Novoselov, A., Konstantinova, E., Loiko, S., Kurasova, A. & Minkina, T. (2020). Composition and properties of soils developed within the ash disposal areas originated from peat combustion (Tyumen, Russia), Soil Sci. Ann., 71, 1, pp. 3-14, DOI: 10.37501/soil sa/121487
- 28. Krzaklewski, W., Pietrzykowski, M. & Woś, B. (2012). Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench), Ecological Enginering, 49, pp. 35-40, DOI: 10.1016/j.ecoleng.2012.08.026
- 29. Maciak, F., Liwski, S. & Biernacka, E. (1976). Agricultural reclamation of lignite and hard coal waste landfills (ash). Part III. The course of soil formation processes in ash dumps under the influence of grass and papilionaceous vegetation, Rocz Glebozn - Soil Sci Ann, 27, 4, pp. 189-209. (in Polish)
- 30. Maiti, S.K. & Jaiswal, S. (2008). Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India, Environmental Monitoring and Assessment, 136, pp. 355-370, DOI: 10.1007/s10661-007-9691-5
- 31. Meravi, N. & Prajapati, S.K. (2019). Reclamation of fly ash dykes using naturally growing plant species, Proceedings of the International Academy of Ecology and Environmental Sciences, 9, 4, pp. 137-148.
- 32. Mocek, A. (1989). Possibilities for rational management of chemically contaminated soils in industrial sanitary protection zones, Dissertation, Rocz AR Poznań, Rozpr Nauk, 185. (in Polish)
- 33. Mocek-Płóciniak, A. (2018). The physicochemical and microbiochemical properties of soils developing in landfills with ash and slag from power plants, Dissertation, Wyd UPP, Rozpr Nauk, 499. (in Polish)
- 34. Mohr, H. M. & Evans, G. M. (2009). Forecasting coal production until 2100, Fuel, 88, 11, pp. 2059-2067, DOI:10.1016/j.fuel.2009.01.032
- 35. Neall, V.E. (2000). Volcanic soils, in: Verheye, W.H. (Ed.). Encyclopedia of land use, land cover and soil sciences, Soils and Soil Sciences (Part 2), 7, pp. 27-34, Eolss Publisher Co. Ltd./UNESCO, Oxford 2000.
- 36. Pietrzykowski, M., Woś, B., Pająk, M., Wanic, T., Krzaklewski, W. & Chodak, M. (2018). Reclamation of a lignite combustion waste disposal site with alders (Alnus sp.): assessment of tree growth and nutrient status within 10 years of the experiment, Environ Sci and Pollut R, 25, pp. 17091-17099, DOI: 10.1007/s11356-018-1892-7
- 37. Rosik-Dulewska, C. (2015). Basics of waste management, PWN, Warszawa 2015.
- 38. Rosik-Dulewska, C., Krawczyńska, U. & Ciesielczuk, T. (2008). Leaching of PAHs from fly ash - sludge blends, Archives of Environmental Protection, 34, 3, pp. 41-47.
- 39. Sokol, E.V., Maksimova, N.V., Volkova, N.I., Nigmatulina, E.N. & Frenkel, A.E. (2000). Hollow silicate microspheres from fly ashes of the Chelyabinsk brown coals (south Urals, Russia). Fuel Process. Technol., 67 (1), pp. 35-52. DOI: 10.1016/S0378-3820(00)00084-9
- 40. Soil Conservation Service, (2004). Soil Survey laboratory methods manual, in: Soil Survey Invest Raport No 42, US Dept Agric Washington DC, pp. 105-195.
- 41. Soil Survey Manual by Soil Survey Division Staff (2017). US Department of Agriculture, Handbook No. 18, Washington 2017.
- 42. Stachowski, P., Oliskiewicz-Krzywicka, A. & Kozaczyk, P. (2013). Estimation of the Meteorological Conditions in the Area of Postmining Grounds of the Konin Region, Rocz Ochr Sr, 15, pp. 1834-1861.
- 43. Strączyńska, S., Strączyński, S. & Gazdowicz, W. (2004). The influence of cover vegetation on morphological characteristics and some properties of embankment formation of furnace discards dump, Rocz Glebozn - Soil Sci Ann, 55, 2, pp. 397-404. (in Polish)
- 44. Strzyszcz, Z. (2004). Assessment of the suitability and principles for the application of various wastes for the reclamation of waste dumps and areas degraded by industrial activities, Prace i Studia, Zabrze 2004.
- 45. Systematyka Gleb Polski (2019). Polskie Towarzystwo Gleboznawcze, Komisja Genezy, Klasyfikacji i Kartografii Gleb. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław - Warszawa, pp. 235.
- 46. Uehara, G. (2005). Volcanic soils, [In] Hillel, D. (Ed). Encyclopedia of Soils in the Environment, Elsevier, pp. 225-232, https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/volcanic-soils
- 47. Ukwattage, L., Ranjith, P.G. & Bouazza, M. (2013). The use of coal combustion fly ash as a soil amendment in agricultural lands (with comments on its potential to improve food security and sequester carbon), Fuel, 109, pp. 400-408, DOI:10.1016/fuel.2013.02.016
- 48. Uzarowicz, Ł. & Zagórski., Z. (2015). Mineralogy and chemical composition of technogenic soils (Technosols) developed from fly ash and bottom ash from selected thermal power stations in Poland, Soil Sci Ann, 66, 2, pp. 82-91, DOI: 10.1515/ssa-2015-0023
- 49. Uzarowicz Ł., Zagórski Z., Mendak E., Bartmiński P., Szara E., Kondras M., Oktaba L., Turek A. & Rogoziński R. (2017). Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part I. Properties, classification, and indicators of early pedogenesis, Catena, 157C, pp. 75-89, DOI: 10.1016/j.catena.2017.05.010
- 50. Uzarowicz, Ł., Skiba, M., Leue, M., Zagórski, Z., Gąsiński, A. & Trzciński, J. (2018a). Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part II. Mineral transformations and soil evolution, Catena, 162C, pp. 255-269, DOI: 10.1016/j.catena.2017.11.005
- 51. Uzarowicz, Ł., Kwasowski, W., Śpiewak, O. & Świtoniak, M. (2018b). Indicators of pedogenesis of Technosol developed in an ash settling pond at the Bełchatów thermal power station (central Poland), Soil Sci Ann, 69, 1, pp. 49-59, DOI: 10.2478/ssa-2018-0006
- 52. Vassilev, S.V. & Vassileva, C.G. (1996). Mineralogy of combustion wastes from coal-fired power stations, Fuel Process Technol, 47, 3, pp. 261-280, DOI: 10.1016/0378-3820(96)01016-8
- 53. Weber, J., Strączyńska, S., Kocowicz, A., Gilewska, M., Bogacz, A., Gwiżdż, M. & Dębicka, M. (2015). Properties of soil materials derived from fly ash 11 years after revegetation of post-mining excavation, Catena, 13, pp: 250-254, DOI: 10.1016/j.catena.2015.05.016
- 54. World Coal Association (2019). Coal use & environment, https://www.worldcoal.org/coal-electricity (30.08.2020).
- 55. Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J., Ge, L.Q. & Xia, M.S. (2015). A comprehensive review on the applications of coal fly ash, Earth Sci Rev, 4, pp. 105-121, DOI: 10.1016/j.earscirev.2014.11.016
- 56. Zikeli, S., Jahn, R. & Kastler, M. (2002). Initial soil development in lignite ash landfills and settling ponds in Saxony-Anhalt, Germany, J Plant Nutr Soil Sc, 165, pp. 530-536, DOI: 10.1002/1522-2624(200208)165:4530::AID-JPLN530>3.0.CO;2-J
- 57. Zikeli, S., Kastler, M. & Jahn, R. (2004). Cation exchange properties of soils derived from lignite ashes, J Plant Nutr Soil Sc, 167, 4, pp. 439-448, DOI: 10.1002/jpln.200421361
- 58. Żołnierz, L., Weber, J., Gilewska, M., Strączyńska, S. & Pruchniewicz, D. (2016). The spontaneous development of undestory vegetation on reclaimed and afforested post mine excavation field with fly ash, Catena, 136, pp. 84-90, DOI: 10.1016/j.catena.2015.07.013
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be28a9b8-149c-491e-adce-ceaf980c74da