Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Triboelectric nanogenerator has extensive applicability because of its capability of harvesting mechanical energy and flexible working modes. To research the optimum pressure and improve the recovered energy of the sliding-mode triboelectric nanogenerator, a contact model of the Al/PTFE tribo-pair is studied by ab initio calculation and finite element simulation. The F-atom of PTFE is proved to be the electron accepter and the charges transferred can be predicted by Bader charge analysis. The mathematical relation between interfacial distance, charges transferred and contact pressure can be fitted. By Gauss’s law, the electric field is simulated and the regeneration energy of the sliding-mode triboelectric nanogenerator can be evaluated by the total electric energy and friction loss. Finally, an optimum pressure can be set to the upper or lower limit of working pressure corresponding to larger recovered energy. And less friction coefficient and larger contact area are also effective methods for recovering energy.
Czasopismo
Rocznik
Tom
Strony
35--39
Opis fizyczny
Bibliogr. 25 poz., rys., wz.
Twórcy
autor
- School of Automotive and Traffi c Engineering, Jiangsu University, Zhenjiang, 212013, China
autor
- School of Automotive and Traffi c Engineering, Jiangsu University, Zhenjiang, 212013, China
Bibliografia
- 1. Liu, D., Yin, X., Guo, H., Zhou, L., Li, X., Zhang, C., Wang, J. & Wang, Z. L. (2019). A Constant Current Triboelectric Nanogenerator Arising From Electrostatic Breakdown. Sci. Adv. 5, eaav6437. DOI: 10.1126/sciadv.aav6437.645068930972365.
- 2. Zhou, Y., Shen, M., Cui, X., Shao, Y., Li, L. & Zhang, Y. (2021). Triboelectric Nanogenerator Based Self-Powered Sensor for Artificial Intelligence. Nano Energy 84, 105887. DOI: 10.1016/j.nanoen.2021.105887.
- 3. Wang, Z. L. (2020). Triboelectric Nanogenerator (TENG) - Sparking an Energy and Sensor Revolution. Adv. Energy Mater. 10, pp. 2000137. DOI: 10.1002/aenm.202000137.
- 4. Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y. S., Hu, Y. & Wang, Z. L. (2013). Theory of Sliding-Mode Triboelectric Nanogenerators. Adv. Mater. 25, 6184–6193. DOI: 10.1002/adma.201302808.24038597.
- 5. Wang, Z. L. (2020). On the First Principle Theory of Nanogenerators from Maxwell’s Equations. Nano Energy 68, 104272. DOI: 10.1016/j.nanoen.2019.104272.
- 6. Shen, X., Wang, A. E., Sankaran, R. M. & Lacks, D. J. (2016). First-Principles Calculation of Contact Electrification and Validation by Experiment. J. Electrostat. 82, 11–16. DOI: 10.1016/j.elstat.2016.04.006.
- 7. Wu, J., Wang, X., Li, H., Wang, F. & Hu, Y. (2019). First-Principles Investigations on the Contact Electrification Mechanism between Metal and Amorphous Polymers for Triboelectric Nanogenerators. Nano Energy 63, 103864. DOI: 10.1016/j.nanoen.2019.103864.
- 8. Tan, D., Willatzen, M. & Wang, Z. L. (2021). Electron Transfer in the Contact-Electrification between Corrugated 2D Materials: A First-Principles Study. Nano Energy 79, 105386. DOI: 10.1016/j.nanoen.2020.105386.
- 9. Fatti, G., Righi, M. C., Dini, D. & Ciniero, A. (2020). Ab Initio Study of Polytetrafluoroethylene Defluorination for Tribocharging Applications. ACS Appl. Polym. Mater. 2, 5129–5134. DOI: 10.1021/acsapm.0c00911.
- 10. Fu, R., Shen, X. & Lacks, D. J. (2017). First-Principles Study of the Charge Distributions in Water Confined between Dissimilar Surfaces and Implications in Regard to Contact Electrification. J. Phys. Chem. C 121, 12345–12349. DOI: 10.1021/acs.jpcc.7b04044.
- 11. Song, J. & Zhao, G. (2019). A Theoretical Model to Predict Contact Electrification. Tribol. Int. 136, 234–239. DOI: 10.1115/1.4053580.
- 12. Kulbago, B. J. & Chen, J. (2020). Nonlinear Potential Field in Contact Electrification. J. Electrostat. 108, 103511. DOI: 10.1016/j.elstat.2020.103511.
- 13. Xu, C., Zhang, B., Wang, A. C., Cai, W., Zi, Y., Feng, P. & Wang, Z. L. (2019). Effects of Metal Work Function and Contact Potential Difference on Electron Thermionic Emission in Contact Electrification. Adv. Funct. Mater. 29, 1903142. DOI: 10.1002/adfm.201903142.
- 14. Niu, S., Zhou, Y. S., Wang, S., Liu, Y., Lin, L., Bando, Y. & Wang, Z. L. (2014). Simulation Method for Optimizing the Performance of an Integrated Tribo-electric Nanogenerator Energy Harvesting System. Nano Energy 8, 150–156. DOI: 10.1016/j.nanoen.2014.05.018.
- 15. Niu, S., Liu, Y., Zhou, Y. S., Wang, S., Lin, L. & Wang, Z. L. (2015). Optimization of Triboelectric Nanogenerator Charging Systems for Efficient Energy Harvesting and Storage. IEEE Trans. Electron Devices 62, 641–647. DOI: 10.1109/TED.2014.2377728.
- 16. Dai, K., Liu, D., Yin, Y., Wang, X., Wang, J., You, Z., Zhang, H. & Wang, Z. L. (2022). Transient Physical Modeling and Comprehensive Optimal Design of Air-breakdown Direct-Current Triboelectric Nano-generators. Nano Energy 92, 106742. DOI: 10.1016/j. nanoen.2021.106742.
- 17. Min, G., Manjakkal, L., Mulvihill, D. M. & Dahiya, R. S. (2020). Triboelectric Nanogenerator with Enhanced Performance via an Optimized Low Permittivity Substrate. IEEE Sens. J. 20, 6856–6862. DOI: 10.1109/JSEN.2019.2938605.
- 18. Niu, S. & Wang, Z. L. (2015). Theoretical Systems of Triboelectric Nanogenerators. Nano Energy 14, 161–192. DOI: 10.1016/j.nanoen.2014.11.034.
- 19. Jiang, T., Zhang, L. M., Chen, X., Han, C. B., Tang, W., Zhang, C., Xu, L. & Wang, Z. L. (2015). Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy. ACS Nano 9, 12562–12572. DOI: 10.1021/acsnano.5b06372.26567754.
- 20. Scandolo, S., Giannozzi, P., Cavazzoni, C., de Gironcoli, S., Pasquarello, A. & Baroni, S. (2017). First-Principles Codes for Computational Crystallography in the Quantum-ESPRESSO Package. J. Phys. Condens. Matter. 29, 465901. DOI: 10.1524/zkri.220.5.574.65062.
- 21. Fatti, G., Righi, M. C., Dini, D. & Ciniero, A. (2020). Ab Initio Study of Polytetrafluoroethylene Defluorination and Its Possible Effects on Tribocharging. ACS Appl. Polym. Mater. 2, 5129–5134. DOI: 10.1021/acsapm.0c00911.
- 22. Clark, E. S. (1999). The molecular conformations of polytetrafluoroethylene: forms II and IV. Polymer 40, 4659–4665. DOI: 10.1016/S0032-3861(99)00109-3.
- 23. D’Ilario, L. & Giglio, E. (1974). Calculation of the van der Waals Potential Energy for Polyethylene and Polytetrafluoroethylene as Two-Atom and Three-Atom Chains: Rotational Freedom in the Crystals. Acta Cryst., B30, 372–378. DOI: 10.1107/S0567740874002846.
- 24. Zhao, P., Soin, N., Prashanthi, K., Chen, J., Dong, S., Zhou, E., Zhu, Z., Narasimulu, A. A., Montemagno, C. D., Yu, L. & Luo, J. (2018). Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators. ACS Appl. Mater. Interfaces 10, 5880–5891. DOI: 10.1021/acsami.7b18442.29346721.
- 25. Babuska, T. F., Pitenis, A. A., Jones, M. R., Nation, B. L., Sawyer, W. G. & Argibay, N. (2016). Temperature-Dependent Friction and Wear Behavior of PTFE and MoS2. Tribol. Lett. 63, 1–7. DOI: 10.1007/s11249-016-0702-y.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be1b9837-09b5-4093-9874-120f6e954279