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Abstract

The stochastic model of the disturbances handled by Kalman filters and the 
necessity of accurate identification of the dynamic model of the controlled 
system or process bring about a significant limitation of use of Kalman filters in
practice. The paper presents filter designed for inertial systems whose models 
and control signals are not well known or are beyond description. The 
assumptions leading to a significant simplification of Kalman algorithm are 
described. On this basis, the algorithm with an experimentally matched 
parameter for the filter properties modification is introduced. An example of
effective adaptive filtration is presented also.
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1 Introduction

Filtration is an important tool in digital signal processing. The adaptive fil-
tration of signals describing the state of the systems and processes in the pres-
ence of noise and measurement inaccuracies has been used for a long time.
Many algorithms are employed for this purpose (e.g. [1]), including the Kal-
man filter algorithm. Unfortunately, the stochastic model of the disturbances 
handled by Kalman filters and the necessity of accurate identification of dy-
namic model of the controlled system or process bring about a significant 
limitation of use of Kalman filters in practice. The paper presents an attempt
to get around these limitations by using a modified Kalman filter algorithm 
for adaptive filtration. 

This filter is designed for inertial systems whose models and control sig-
nals are not well known or are beyond description. An example of such a sys-
tem can be a thermal system with accidental batch. Another example is the
non-explosive combustion of a sample of unknown composition. The filter 
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described in the article has been, among others, applied for the measurement 
of the SO2 and CO2 contents in combustion gases produced in such 
a process [2].

2. Kalman filter

The adaptive properties of Kalman filter [1] are associated with the optim-
al linear quadratic estimation of the system state, based on the knowledge of 
the system model, on the control vector and on the parameters of stochastic 
disturbances of state and also on the measurement of state variables. The algo-
rithm is based on a set of equations describing the dynamics in the state space
in the presence of disturbances. Its discrete form is

         
     kwkCxky

kvkukBkAxkx


 1

(1) 

where A � state matrix, B � input matrix, C � output matrix, x � state vector, y 
� output vector, u � control vector, v � state disturbances vector with the co-
variance matrix Q, and w � measurement disturbance vector with the covari-
ance matrix R. For a better legibility we shall assume later on that the state 
vector is fully observed, which means that C is a unitary  matrix. It does not
cause any limitation, because on the basis of the full form of the Kalman filter
description the necessary modifications can be easily made.  

The Kalman filter algorithm of the estimation of state vector value in the 
k-th step, made before the measurement y(k), is based on its estimation in the
previous step  1|1�  kkx , as described by the equation 

    )1(1|1�1|�  kBukkxAkkx (2) 

The estimation error is defined as 

     1|�|1~  kkxkxkkx (3) 

It has the covariance 

     11|11|  kQAkkAPkkP T (4) 

When the measurement y(k) is completed, the additional information is ob-
tained, on the basis of which the state vector estimator in the k-th step gets the 
form 
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          1|�1|�|�  kkxkykKkkxkkx (5) 

where K(k) is the Kalman gain matrix, which can be calculated from the equa-
tion 

         11|1|  kRkkPkkPkK (6) 

The covariance of the state estimation error for k step is related to the covari-
ance (4) as follows 

      1|1|  kkPkKkkP (7) 

3. The assumptions for adaptive filter 

It was assumed in general that the described adaptive filter is intended for 
systems of inertial type. For many inertial systems in which the adaptive fil-
tration can be used the process can be split into three phases of the filtered 
signal change: rising, stabilization and dropping. A typical example for this is 
the temperature in thermal systems: they are heated up, kept at a constant 
temperature and then cooled down. The presented adaptive filter is particular-
ly destined for such a kind of work. 

Another assumption was that the filtered state vector consists of only one
state variable and its step-to-step changes are small over the applied mea-
surement repetition period τm, especially in comparison with the full range
variation that is physically permissible in the system. 

The next assumption for the presented filter is a limited knowledge of the
system model and its input control signals, which on basis of eq. (2) results in 
an inaccuracy of prediction of the state vector in the consecutive step. Addi-
tionally, in such a case the control signals should be treated as a part of distur-
bance signal. In such a situation the disturbance signal v(k) cannot be de-
scribed as stochastic with normal distribution, as it is assumed in Kalman
filters. However, for the filter in question, similarly like for a usual Kalman 
filter, the measurement disturbances will be modelled as the stochastic signal 
w(k) of normal distribution and known variance R. 

It was possible to make use of Kalman filter in the described case thanks to 
some simplification of the model of inertial system and the adoption of some
analogy between the signals influencing the state of the system in both filters.
In the consequence, the described filter loses the optimality defined for Kal-
man filter. As a result of such a modification the additional weight coeffi-
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cients have been applied to the disturbances. This enables us to experimental-
ly adjust the filter properties to requirements in individual cases.

As mentioned, the presented adaptive filter has been designed for the sin-
gle variable filtration only. As a result, all matrices and vectors in Kalman
filter eq. (1), (7) become scalars and all covariance matrices become va-
riances. This much simplifies the applied algorithm.

To adapt the Kalman filter algorithm to our filtration case the interdepen-
dences that would allow the heuristic equivalence of the process signals fil-
tered in both filters should be determined.  

It was assumed in the proposed solution that the step-to-step changes Δx of
the state variable are small. Basing on this it can be also assumed that when 
the input signal u(k) and measurement signal y(k) are unknown, the most 
probable value of state vector in the step k is equal to its value filtered in the 
step k-1. The appropriate estimator can be written as 

)1|1(�)1|(�  kkxkkx (8) 

Substituting equation (8) for (2) is synonymous with setting the system para-
meters as: A=1 and B=0. It had been assumed before that C=1, so the eq. (1) 
can be replaced by

     
     kwkxky

kvkxkx


 1

(9) 

It is worth to stress that value A=1 describes the system of integrating cha-
racter, whose pole z=1 (in continues notation s=0). For the time increments Δt 
small enough (a few times measurement period τm ) such a model in many 
cases well enough approximates the dynamics of inertial systems of the time
lag T>> Δt. 

To interrelate the respective equations of both filters we assume that the 
signal v(k) in the Kalman filter equations, now signed as vn(k), corresponds to 
v(k) in the real system filtered by the presented adaptive filter, upon certain 
conditions. 

The stochastic signal vn(k) can be described by its variance , which for N 
samples can be calculated as  

    
2

1

2

1

1 
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where v  is the expected value, which for e.g. for white noise is equal zero. As
mentioned, v(k) in the real system shows some time  trends of unknown rate, 
so its parameters cannot by characterized using eq. (10). For this it was as-
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sumed that the criterion of the signals vn(k) and v(k) equivalence is equality 
of averaged square values over the step-to-step increments.

During Kalman filtration, the measurements of y(k) values and the estima-
tion of state variables values are carried out. In the result, for the determina-
tion of v(k) and vn(k) equivalence we can accept the equality of parameter 
described as  

      
2

1

1|1�
1

1 
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Variance Q(k) for vn(k) and u(k)=0 can be easily calculated on the basis of 
S(k) using the Kalman filter equations. Taking into account the assumption of
equivalence of v(k) and vn(k), the value Q(k) calculated similarly on the basis 
of v(k) can be treated likewise in proposed filter equations. The finally ac-
cepted method of calculation for S(k) and that for the substitute value Q(k) in 
adaptive filter is described in the next part of the paper. 

The last essential assumption for the adaptive filter under consideration is
the possibility of its properties modification depending on the process needs.
Among others, it concerns the compromise between the requirement of low 
delays during fast changes of system state and that of the effective noise sig-
nal rejection in the steady state. To achieve this goal the diversification of
weights assigned to the state and measurement disturbances are allowed. 

3. The adaptive filtration algorithm 

At the beginning let us temporarily assume that signals v(k) and w(k0 are 
white noise, thus they have normal distribution. For the sake of simplified 
form of model (9), the equations of Kalman filter for such a system also un-
dergo simplification. They get the form 

     
   

         
          1|1�1|�
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(12)

The values of y(k) sequence are obtained from measurements. Taking into 
consideration (9) they are equal to 

       kwkvkxky  1 (13)
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After filtration (12), we obtain the sequence of estimated values of state 
 kkx |�  whose estimation error referred to the previous step is equal 

     1|1�11|1~  kkxkxkkx (14)

and whose variance is P(k-1|k-1)  
The sequences of signal v(k) and w(k) are not correlated and have zero

value expected values, due to the assumption, they are white noise. Any se-
quences of either of them resulting from shifting by arbitrary number of steps 
are not correlated either. Taking into account eq, (12) and eq, (3) the equiva-
lence parameter S(k) described by eq. (11) can be written as  
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(15)

Covariance of error  kkx |~
 referred to signals v(k) and w(k) signed as 

 wvxkCov ,,~,  is for Q<R negligibly small in the total balance of estimation 

errors. Variance Q(k) assuming that  wvxkCov ,,~,  is equal to zero can be
determined from the equation

          1|11|1�
1

1
|
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(16)

However, one should be aware that relationship (16) in some cases can lead to
overestimation.  

During Kalman filtration (12) recursive calculations are executed, among 
others the calculations of error variance P(k|k).  

To adapt the calculations of the actual value of Q(k) variance to this me-
thod of calculation it is convenient to substitute a modified equation (17) for 
(16) that corrects step by step the value of Q(k). This equation is: 

             1|11�11 2  kkPRkxkykQkQ  (17)

where α is weighting coefficient of value e.g. 0.25. Eq. (17) has the form of a 
low-pass IIR filter moderating the accidental fluctuations of the calculations 
results. 
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It is worthwhile to take into account the effects of Q(k) estimation with
reference to R variance. For the described assumptions the Kalman gain K 
applied in eq. (5) has values shown in Figure 1.

Figure 1. Kalman filter gain vs. Q/R ratio 

Accidental fluctuation of Q(k), calculated from eq. (17) on the basis of dis-
turbed measurement values, can lead to even negative values. So it is neces-
sary to limit the lowest value of Q(k)/R to e.g. 1/10000 (K=0.01). According 
to Figure 1 the value of gain K is very small for this ratio. Similarly the upper 
limit e.g. Q(k)/R=100 (K=0.99) is also reasonable. So, we have the  following 
limitation  

  RkQR 1000001.0  (18)

So far, the model of the system dynamics has been considered in a simpli-
fied form (9). The state disturbances taken into consideration were treated as
white noise. Additionally, the value of Q(k) derived from eq. (16) can be 
overestimated.  

As a result, some corrections in the application of the presented equations
should be made in order to obtain effective adaptive filtering in the real sys-
tem. Figure 1 shows that the filter gain K depends on Q/R ratio. Let us add a 
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new weight coefficient β in the equation describing Q(k). Then the modified 
value of state disturbances designated as Qm(k) can be written as 

             1|11�11 2  kkPRkxkykQkQ mm  (19)

The weight coefficient β can reduce the effects of Q(k) overestimation and 
that of the poor evaluation of the measurement disturbances variance R. If β
drops down, it reduces the influence of measurement disturbances on the fil-
tered variable in the steady state, but on the other hand, leads to the time de-
lays increase during the periods of fast changes.  

The right value of β should be a trade-off based on experimental evalua-
tion.  

After the modification associated with introducing the coefficient β and 
substituting Qm(k) for Q(k) variance in the Kalman filter, the final equations 
of the presented adaptive filter take the form 
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(20)

The operation of the filter described by (18)-(19) is shown in Figure 1 to 3, 
using a test signal that was deterministic by nature, being a combination of
single steps and exponents. This signal was jammed with a measuring noise of
variance R. The test signal proper simulates the state changes going on at 
various rates and its character is much different from that of the noise with
normal distribution, which Kalman filtration concerns.  

Figure 2 shows simultaneously the test signal and the filtration result ob-
tained with a LP filter having large time-constant. It allows for good filtration 
in the quasi-steady state, but brings in considerable delays, particularly in the 
phase of initial rise. Reduction of the filter time-constant much reduces the 
delays, but the filtration becomes practically ineffective in the quasi-steady 
state (Figure 3). Figure 4 demonstrates the operation of the discussed filter. 
We can easily notice that the adaptive filter is free of the above-described 
faults of the filters with an invariable time-constant. The value of β=0.5 in 
equation (12) was assumed for this filter. 
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Figure 2. Filtration of LP filter of invariable large time constant

Figure 3. Filtration of LP filter of invariable small time constant
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Figure 4. Filtration of adaptive LP filter

4. Conclusions 

The paper presents an adaptive filter based on Kalman filter algorithm.
This filter doesn�t need accurate information either about the system dynamics 
model or about the control signal on the system input. The filter estimates the 
values of state variable on the basis of the measurement disturbances variance
and the variations of signal on the system output. As it is shown in Figure 4
such a filter can be very effective in various phases of the real process.

The described filter was successfully applied by the author in a number of 
thermal systems for control (eg. [3]) and measurement purposes. 
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