PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of millimeter wave propagation parameters in fifth generation (5G) mobile systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Ocena parametrów propagacji fal milimetrowych w systemach mobilnych piątej generacji (5G)
Języki publikacji
EN
Abstrakty
EN
This paper analyzes the millimeter wave propagation parameters in 5G systems based on simulation results at 4 GHz, 28 GHz, and 73 GHz for different environments, urban and rural. The analyzed propagation parameters are path loss, shadow fading and path loss exponent for different scenarios with line-of-sight and non-line-of-sight. Additionally, we compared millimeter wave signal propagation from directional and omnidirectional antennas for the scenario when we have 100 receiving spots.
PL
W artykule przeanalizowano parametry propagacji fal milimetrowych w systemach 5G na podstawie wyników symulacji dla częstotliwości 4 GHz, 28 GHz i 73 GHz dla różnych środowisk miejskich i wiejskich. Analizowanymi parametrami propagacji są utrata ścieżki, zanikanie cienia i wykładnik utraty ścieżki dla różnych scenariuszy z linią wzroku i bez linii wzroku. Dodatkowo porównaliśmy propagację sygnału fal milimetrowych z anten kierunkowych i dookólnych dla scenariusza, w którym mamy 100 punktów odbiorczych.
Rocznik
Strony
164--170
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Faculty of Electrical and Computer Engineering, University of Prishtina, Street: Sunny Hill, nn, 10000, Prishtina, Republic of Kosovo
  • Faculty of Electrical and Computer Engineering, University of Prishtina, Street: Sunny Hill, nn, 10000, Prishtina, Republic of Kosovo
  • Faculty of Electrical and Computer Engineering, University of Prishtina, Street: Sunny Hill, nn, 10000, Prishtina, Republic of Kosovo
Bibliografia
  • [1] T. S. Rappaport, R. W. Heath Jr, R. C. Daniels, and J. N. Murdock, Millimeter wave wireless communications. Pearson Education, 2015.
  • [2] P. Adhikari, "Understanding millimeter wave wireless communication," Loea Corporation, pp. 1-6, 2008.
  • [3] Y. Banday, G. M. Rather, and G. R. Begh, "Effect of atmospheric absorption on millimetre wave frequencies for 5G cellular networks," IET Communications, vol. 13, no. 3, pp. 265- 270, 2019.
  • [4] A. S. Seraj, "Study on Propagation Characteristics of 5G Millimeter-Wave Wireless Communication Systems for Dense Urban Environments," Waseda University, 2019.
  • [5] M. Khalily, M. Ghoraishi, S. Taheri, S. Payami, and R. Tafazolli, "Millimeter-wave directional path loss models in the 26 GHz, 32 GHz, and 39 GHz bands for small cell 5G cellular system," 2018.
  • [6] I. A. Hemadeh, K. Satyanarayana, M. El-Hajjar, and L. Hanzo, "Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget," IEEE Communications Surveys & Tutorials, vol. 20, no. 2, pp. 870-913, 2017.
  • [7] I. 3c, "IEEE standard for information technology– telecommunications and information exchange between systems–local and metropolitan area networks–specific requirements. Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for high rate Wireless Personal Area Networks (WPANs) amendment 2: Millimeter-wave-based alternative physical layer extension," IEEE Std 802.15. 3c-2009 (Amendment to IEEE Std 802.15. 3- 2003), 2009.
  • [8] H. Sawada, H. Nakase, S. Kato, M. Umehira, K. Sato, and H. Harada, "Impulse response model and parameters for indoor channel modeling at 60GHz," in 2010 IEEE 71st Vehicular Technology Conference, 2010: IEEE, pp. 1-5.
  • [9] A. Maltsev et al., "MiWEBA D5. 1: Channel modeling and characterization," Tech. Rep., 2014.
  • [10] L. Raschkowski, P. Kyösti, K. Kusume, T. Jämsä, and V. Nurmela, "Deliverable D1. 4: METIS channel models," METIS, Document Number: ICT-317669-METIS/D1. 4, 2015.
  • [11] 3GPP, "Study on channel model for frequency spectrum above 6 GHz," TR 38.900 Release 14, 2016.
  • [12] N. Docomo, "‘White paper on 5G channel model for bands up to 100 GHz," Tech. Rep., 2016. [Online]. Available: http://www. 5gworkshops. com/5GCM. html, 2016.
  • [13] S. Sun, T. S. Rappaport, M. Shafi, P. Tang, J. Zhang, and P. J. Smith, "Propagation models and performance evaluation for 5G millimeter-wave bands," IEEE Transactions on Vehicular Technology, vol. 67, no. 9, pp. 8422-8439, 2018.
  • [14] S. Ju, O. Kanhere, Y. Xing, and T. S. Rappaport, "A millimeter wave channel simulator NYUSIM with spatial consistency and human blockage," in 2019 IEEE Global Communications Conference (GLOBECOM), 2019: IEEE, pp. 1-6.
  • [15] S. Sun, G. R. MacCartney, and T. S. Rappaport, "A novel millimeter-wave channel simulator and applications for 5G wireless communications," in 2017 IEEE International Conference on Communications (ICC), 2017: IEEE, pp. 1-7.
  • [16] Z. Pi and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE communications magazine, vol. 49, no. 6, pp. 101-107, 2011.
  • [17] G. T. R. 38.913, "Study on scenarios and requirements for next generation access technologies," Version 14.1. 0, 2016.
  • [18] X. Ge, S. Tu, G. Mao, C.-X. Wang, and T. Han, "5G ultra-dense cellular networks," IEEE Wireless Communications, vol. 23, no. 1, pp. 72-79, 2016.
  • [19] Horizon, "The EU Framework Programme for Research and Innovation," 2014.
  • [20] M. Series, "IMT Vision–Framework and overall objectives of the future development of IMT for 2020 and beyond," Recommendation ITU, vol. 2083, p. 0, 2015.
  • [21] G. R. MacCartney Jr et al., "Millimeter wave wireless communications: New results for rural connectivity," in Proceedings of the 5th workshop on all things cellular: operations, applications and challenges, 2016, pp. 31-36.
  • [22] T. S. Rappaport, S. Sun, and M. Shafi, "Investigation and comparison of 3GPP and NYUSIM channel models for 5G wireless communications," in 2017 IEEE 86th vehicular technology conference (VTC-Fall), 2017: IEEE, pp. 1-5.
  • [23] T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang, "Overview of millimeter wave communications for fifth-generation (5G) wireless networks— With a focus on propagation models," IEEE Transactions on antennas and propagation, vol. 65, no. 12, pp. 6213-6230, 2017.
  • [24] M. Series, "Guidelines for evaluation of radio interface technologies for IMT-Advanced," Report ITU, vol. 638, pp. 1- 72, 2009.
  • [25] J. Meinila et al., "D5. 3: WINNER+ final channel models," Wireless World Initiative New Radio WINNER, pp. 119-172, 2010.
  • [26] Y. Azar et al., "28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City," in 2013 IEEE international conference on communications (ICC), 2013: IEEE, pp. 5143-5147.
  • [27] T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, "Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design," IEEE transactions on Communications, vol. 63, no. 9, pp. 3029-3056, 2015.
  • [28] C. U. Bas et al., "28 GHz microcell measurement campaign for residential environment," in GLOBECOM 2017-2017 IEEE Global Communications Conference, 2017: IEEE, pp. 1-6.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be194e54-9b41-46ca-9ba3-958d30b15fa4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.