PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Immunosensors for human cardiac troponins and CRP, in particular amperometric cTnI immunosensor

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the review of immunosensors for selected cardiovascular disease markers: human cardiac troponins and human C-reactive protein (CRP) is presented. In particular, (cTnI) amperometric immunosensor for cTnI measurements in the concentration range useful in medical diagnostics, based on the developed earlier human CRP amperometric immunosensor, is described. The human cTnI is recommended as one of specific myocardial damage biomarkers, and is considered as the ‘‘gold standard’’, whereas the human CRP is used as the powerful, nonspecific, supplementary biomarker of cardiovascular disease. Carbon, graphite and platinum pastes, used for fabrication of our immunosensor working electrode (WE), were investigated. In the developed simple measuring procedure, based on a direct solid phase enzyme-linked immunosorbent assay (ELISA), for the first time ascorbic acid monophosphate was used for cTnI detection as a substrate in enzymatic reaction of alkaline phosphatase labelling antibodies. Disposable amperometric graphite immunosen- sors, made on polyester film by means of microdispensing robot, suitable for determination of cTnI in the concentration range 0–35 μg/L with the sensitivity 0.67 μA/(μg/L) and linear correlation coefficient 0.91 were obtained.
Twórcy
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, Warsaw 02-109, Poland
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, Warsaw 02-109, Poland; Institute of Electron Technology, Warsaw, Poland
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, Warsaw 02-109, Poland; Institute of Electron Technology, Warsaw, Poland
autor
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, Warsaw 02-109, Poland
autor
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, Warsaw 02-109, Poland
autor
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, Warsaw 02-109, Poland
Bibliografia
  • [1] Thygesen K, Mair J, Katus H, Plebani M, Venge P, Collinson P, et al. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur Heart J 2010;31:2197–204.
  • [2] Hamm CW, Bassand JP, Agewall S, Bax J, Boersma E, Bueno H, et al. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2011;32:2999–3054.
  • [3] Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. J Am Coll Cardiol 2012;60(16):1581–98.
  • [4] Perk J, Backer GD, Gohlke H, Graham I, Reiner Z, Verschuren WMM, et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012)' The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts) * Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2012;33:1635–701.
  • [5] Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest 2003;111:1805–12.
  • [6] Verma S, Szmitko PE, Yeh ETH. C-reactive protein structure affects function. Circulation 2004;109:1914–7.
  • [7] Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002;347(20):1557–65.
  • [8] Shlipak MG, Ix JH, Bibbins-Domingo K, Lin F, Whooley MA. Biomarkers to Predict recurrent cardiovascular disease: The Heart and Soul Study. Am J Med 2008;121:50–7.
  • [9] Boncler M, Luzak B, Watała C. Znaczenie białka C-reaktywnego w patofizjologii miażdżycy. Postepy Hig Med Dosw 2006;60:538–46.
  • [10] Yeh ETH, Willerson JT. Coming of age of C-reactive protein: using inflammation markers in cardiology. Circulation 2003;107:370–1.
  • [11] Rost NS, Wolf PA, Kase CS, Kelly-Hayes M, Silbershatz H, Massaro JM, et al. Plasma concentration of C-reactive protein and risk of ischemic stroke and transient ischemic attack: The Framingham Study. Stroke 2001;32:2575–9.
  • [12] Ramasamy I. Biochemical markers in acute coronary syndrome. Clin Chim Acta 2011;412:1279–96.
  • [13] Kaptoge S, Angelantonio ED, Lowe G, Pepys MB, Thompson SG, Collins R, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 2010;375:132–40.
  • [14] Yang Z, Zhou DM. Cardiac markers and their point-of-care testing for diagnosis of acute myocardial infarction. Clin Biochem 2006;39:771–80.
  • [15] Abd TT, Eapen DJ, Bajpai A, Goyal A, Dollar A, Sperling L. The role of C-reactive protein as a risk predictor of coronary atherosclerosis: implications from the JUPITER trial. Curr Atheroscler Rep 2011;13:154–61.
  • [16] Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon ROI, Criqui M, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003;107:499–511.
  • [17] Mora S, Ridker PM. Justification for the use of statins in primary prevention: an intervention trial evaluating rosuvastatin (JUPITER) – can C-reactive protein be used to target statin therapy in primary prevention? Am J Cardiol 2006;97(2A):33A–41A.
  • [18] Lenderink T, Boersma E, Vahanian A, Boer MJd, Umans V, Brand MJVd, et al. Elevated troponin T and C-reactive protein predict impaired outcome for 4 years in patients with refractory unstable angina, and troponin T predicts benefit of treatment with abciximab in combination with PTCA. Eur Heart J 2003;24:77–85.
  • [19] Kaptoge S, Angelantonio ED, Pennells L, Wood AM, White IR, Gao P, et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 2012;367:1310–20.
  • [20] Wytyczne Europejskiego Towarzystwa Kardiologicznego dotyczące przedoperacyjnej oceny ryzyka sercowego oraz okołooperacyjnego postępowania kardiologicznego u pacjentów poddawanych zabiegom niekardiologicznym, Grupa Robocza Europejskiego Towarzystwa Kardiologicznego (ESC) do spraw oceny ryzyka sercowego oraz okołooperacyjnego postępowania kardiologicznego u pacjentów poddawanych zabiegom niekardiologicznym, we współpracy z Europejskim Towarzystwem Anestezjolo gicznym (ESA). Kardiol Pol 2010;68(3 (Suppl. 2)).
  • [21] Retterstol L, Eikvar L, Bohn M, Bakken A, Erikssen J, Berg K. C-reactive protein predicts death in patients with previous premature myocardial infarction – a 10 year follow-up study. Atherosclerosis 2002;160(2):433–40.
  • [22] Bellocci F, Biasucci LM, Gensini FG, Padeletti L, Raviele A, Santini M, et al. Prognostic role of post-infarction C-reactive protein in patients undergoing implantation of cardioverter-defibrillators: design of the C-reactive protein Assessment after Myocardial Infarction to GUide Implantation of DEfibrillator (CAMI GUIDE) study. J Cardiovasc Med (Hagerstown) 2007;8(4):293–9.
  • [23] Orzędała-Koszel U, Bachanek T, Borowska BK. Białko C-reaktywne jako czynnik diagnostyczny w stanach zapalnych jamy ustnej i chorobach nowotworowych. Dent Med Probl 2005;42(1):131–6.
  • [24] Kumar SV, Ravunny RK, Chakraborty C. Conserved domains, conserved residues, and surface cavities of c-reactive protein (CRP). Appl Biochem Biotechnol 2011;165:497–505.
  • [25] Volanakis JE. Human C-reactive protein: expression, structure, and function. Mol Immunol 2001;38:189–97.
  • [26] Black S, Kushner I, Samols D. C-reactive protein. J Biol Chem 2004;279(47):48487–90.
  • [27] Ansar W, Ghosh S. C-reactive protein and the biology of disease. Immunol Res 2013;56:131–42.
  • [28] Ciubotaru I, Potempa LA, Wander RC. Production of modified C-reactive protein in U937-derived macrophages. Exp Biol Med 2005;230:762–70.
  • [29] Sun H, Koike T, Ichikawa T, Hatakeyama K, Shiomi M, Zhang B, et al. C-reactive protein in atherosclerotic lesions: its origin and pathophysiological significance. Am J Pathol 2005;167:1139–48.
  • [30] Potempa LA, Maldonado BA, Laurent P, Zemel ES, Gewurz H. Antigenic, electrophoretic and binding alterations of human C-reactive protein modified selectively in the absence of calcium. Mol Immunol 1983;20(11):1165–75.
  • [31] Widener JM. C-reactive protein measurement in the patient with vascular disease. J Vasc Nurs 2007;25:51–4.
  • [32] Sikorski T, Marcinowska-Suchowierska E. Interpretacja wyników badań hematologicznych w praktyce lekarza rodzinnego. Postępy Nauk Medycznych 2007;4:112–8.
  • [33] Solnica B. Troponiny sercowe. Med Prakt 2004;10:133–6.
  • [34] Devereaux PJ, Chan MT, Alonso-Coello P, Walsh M, Berwanger O, Villar JC, et al. Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. JAMA 2012;307 (21):2295–304.
  • [35] Stępień E, Śnieżek-Maciejewska M, Szajna-Zych M, Sadowski J. Biochemiczne markery niedokrwienia mięśnia sercowego w diagnostyce okołooperacyjnego uszkodzenia serca. Forum Kardiol 2002;7(4):135–42.
  • [36] Myocardial infarction redefined – a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. Eur Heart J 2000;21:1502–13.
  • [37] Lee KK, Shah ASV, Mills NL. Diagnosis of myocardial infarction: cardiac troponin I or troponin T. Clin Biochem 2014;47:319–20.
  • [38] Naskalski JW. Postępy w diagnostyce laboratoryjnejw 2002 roku. Med Prakt 2003;29–35. 2003/01.
  • [39] Trzecia uniwersalna definicja zawału serca. Kardiol Pol 2012;70(Suppl. V):235–54.
  • [40] Tate JR, Bunk DM, Christenson RH, Katrukha A, Noble JE, Porter RA, et al. Standardisation of cardiac troponin I measurement: past and present. Pathology 2010;42 (5):402–8.
  • [41] Bange A, Halsall HB, Heineman WR. Microfluidic immunosensor systems. Biosens Bioelectron 2005;20:2488–503.
  • [42] Anfossi L, Baggiani C, Giovannoli C, Giraud G. Homogeneous immunoassay based on gold nanoparticles and visible absorption detection. Anal Bioanal Chem 2009;394:507–12.
  • [43] Wang J, Mountziaris TJ. Homogeneous immunoassays based on fluorescence emission intensity variations of zinc selenide quantum dot sensors. Biosens Bioelectron 2013;41:143–9.
  • [44] Żeromski J, editor. Metody immunologiczne: przewodnik do ćwiczeń z immunologii. Poznań: Wydawnictwo Uczelniane Akademii Medycznej im. Karola Marcinkowskiego; 1997.
  • [45] Henares TG, Mizutani F, Hisamoto H. Current development in microfluidic immunosensing chip. Anal Chim Acta 2008;611:17–30.
  • [46] Joshi M, Pintob R, Ramgopal Raob V, Mukherjia S. Silanization and antibody immobilization on SU-8. Appl Surf Sci 2007;253:3127–32.
  • [47] Blagoi G, Keller SU, Johansson A, Boisen A, Dufva HM. Functionalization of SU-8 photoresist surfaces with IgG proteins. Appl Surf Sci 2008;255(5):2896–902.
  • [48] Rajaraman S, Noh H-SM, Hesketh PJ, Gottfried DS. Rapid, low cost microfabrication technologies toward realization of devices for dielectrophoretic manipulation of particles and nanowires. Sens Actuators B 2006;114:392–401.
  • [49] Meacham KW, Giuly RJ, Guo L, Hochman S, DeWeerth SP. A lithographically-patterned elastic multi-electrode array for surface stimulation of spinal cord. Biomed Microdevices 2008;10(2):259–69.
  • [50] Baek J-Y, An JH, Choi JM, Park KS, Lee SH. Flexible polymeric dry electrodes for the long-term monitoring of ECG. Sens Actuators A 2008;143:423–9.
  • [51] Illiescu C, Chen B, Miao J. On the wet etching of Pyrex glass. Sens Actuators A 2008;143:154–61.
  • [52] Liu J, Qiao H, Liu C, Xu Z, Li Y, Wang L. Plasma assisted thermal bonding for PMMA microfluidic chips with integrated metal microelectrodes. Sens Actuators B 2009;141:646–51.
  • [53] Tsai Y-C, Ho C-L, Liao S-W. Nanobiosensors prepared by electrodepositing of glucose oxidase in PMMA nanochannels produced by atomic force microscopy nanolithography. Electrochem Commun 2009;11:1316–9.
  • [54] Castano-Alvarez M, Fernandez-Abedul MT, Costa-Garcia A. Amperometric detector designs for capillary electrophoresis microchips. J Chromatogr A 2006;1109:291–9.
  • [55] Ishida A, Natsume M, Kamidate T. Microchip reversed-phase liquid chromatography with packed column and electrochemical flow cell using polystyrene/poly (dimethylsilane). J Chromatogr A 2008;1213:209–17.
  • [56] Li C, Han J, Ahn CH. Flexible biosensors on spirally rolled micro tube for cardiovascular in vivo monitoring. Biosens Bioelectron 2007;22(9):1988–93.
  • [57] Woytasik M, Grandchamp J-P, Dufour-Gergam E, Martincic E, Gilles J-P, Megherbi S, et al. Fabrication of planar and three-dimensional microcoils on flexible substrates. Microsyst Technol 2006;12(10):973–8.
  • [58] Dawoud AA, Kawaguchi T, Markushin Y, Porter MD, Jankowiak R. Separation of catecholamines and dopamine-derived DNA adduct using a microfluidic device with electrochemical detection. Sens Actuators B 2006;120(1):42–50.
  • [59] Huang C-J, Chen Y-H, Wang C-H, Chou T-H, Lee G-B. Integrated microfluidic systems for automatic glucose sensing and insulin injection. Sens Actuators B 2007;122:461–8.
  • [60] Morin F, Nishimura N, Griscom L, LePioufle B, Fujita H, Takamura Y, et al. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips. Biosens Bioelectron 2006;21:1093–100.
  • [61] http://www.millipore.com (accessed 17.06.15).
  • [62] http://www.pall.com (accessed 17.06.15).
  • [63] Yeom S-H, Hanc M-E, Kanga B-H, Kimb K-J, Yuanb H, Eumd N-S, et al. Enhancement of the sensitivity of LSPR-based CRP immunosensors by Au nanoparticle antibody conjugation. Sens Actuators B 2013;177:376–83.
  • [64] Buch M, Rishpon J. An electrochemical immunosensor for C-reactive protein based on multi-walled carbon nanotube-modified electrodes. Electroanalysis 2008;20 (23):2592–4.
  • [65] Watanabe J, Ishihara K. Single step diagnosis system using the FRET phenomenon induced by antibody-immobilized phosphorylcholine group-covered polymer nanoparticles. Sens Actuators B: Chem 2008;129(1):87–93.
  • [66] Kumar D, Prasad BB. Multiwalled carbon nanotubes embedded molecularly imprinted polymer-modified screen printed carbon electrode for the quantitative analysis of C-reactive protein. Sens Actuators B 2012;171–172:1141–50.
  • [67] Zhou F, Lu MWW, Bian Z-P, Zhang J-R, Zhu J-J. Electrochemical immunosensor for simultaneous detection of dual cardiac markers based on a poly (dimethylsiloxane)-gold nanoparticles composite microfluidic chip: a proof of principle. Clin Chem 2010;56(11):1701–7.
  • [68] Shen W, Tian D, Cui H, Yang D, Bian Z. Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N- (ethylisoluminol)-functionalized gold nanoparticles as labels. Biosens Bioelectron 2011;27:18–24.
  • [69] Shim JS, Ahn CH. Optical immunosensor using carbon nanotubes coated with a photovoltaic polymer. Biosens Bioelectron 2012;34:208–14.
  • [70] Lee J, Lee Y, Park J-Y, Seo H, Lee T, Lee W, et al. Sensitive and reproducible detection of cardiac troponin I in human plasma using a surface acoustic wave immunosensor. Sens Actuators 2013;178:19–25.
  • [71] Liu G, Lin Y. Nanomaterial labels in electrochemical immunosensors and immunoassays. Talanta 2007;74:308–17.
  • [72] Fathil MFM, Arshad MKM, Gopinath SCB, Hashim U, Adzhri R, Ayub RM, et al. Diagnostics on acute myocardial infarction: cardiac troponin biomarkers. Biosens Bioelectron 2015;70:209–20.
  • [73] Ko S, Kim B, Jo S-S, Oh SY, Park J-K. Electrochemical detection of cardiac troponin I using a microchip with the surface-functionalized poly(dimethylsiloxane) channel. Biosens Bioelectron 2007;23:51–9.
  • [74] Dutra RF, Mendes RK, Silva VLd, Kubota LT. Surface plasmon resonance immunosensor for human cardiac troponin T based on self-assembled monolayer. J Pharm Biomed Anal 2007;43:1744–50.
  • [75] Billah MM, Hays HCW, Hodges CS, Ponnambalam S, Vohra R, Millner PA. Mixed self-assembled monolayer (mSAM) based impedimetric immunosensors for cardiac troponin I (cTnI) and soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1). Sens Actuators B 2012;173:361–6.
  • [76] Baldini F, Carloni A, Giannetti A, Porro G, Trono C. An optical PMMA biochip based on fluorescence anisotropy: application to C-reactive protein assay. Sens Actuators B 2009;139:64–8.
  • [77] Bhattacharyya A, Klepperich CM. Design and testing of disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples. Biomed Microdevices 2007;9:245–51.
  • [78] Balck A, Michalzik M, Al-Halabi L, Dubel S, Buttgenbach S. Design and fabrication of a lab-on-a-chip for point-of-care diagnosis. Sens Transducers J 2011;127(4):102–11.
  • [79] Park J, Kurosawa S, Takai M, Ishihara K. Antibody immobilization to phospholipid polymer layer on gold substrate of quartz crystal microbalance immunosensor. Colloids Surf B: Biointerfaces 2007;55:164–72.
  • [80] Meyer MHF, Hartmann M, Keusgen M. SPR-based immunosensor for the CRP detection – a new method to detect a well known protein. Biosens Bioelectron 2006;21:1987–90.
  • [81] Hennessey H, Afara HN, Omanovic S, Padjen AL. Electrochemical investigations of the interaction of C-reactive protein (CRP) with a CRP antibody chemically immobilized on a gold surface. Anal Chim Acta 2009;643:45–53.
  • [82] Albrecht C, Kaeppel N, Gauglitz G. Two immunoassay formats for fully automated CRP detection in human serum. Anal Bioanal Chem 2008;391:1845–52.
  • [83] Oh SW, Moon JD, Park SY, Jang HJ, Kim JH, Nahm KB, et al. Evaluation of fluorescence hs-CRP immunoassay for point-of-care testing. Clin Chim Acta 2005;356:172–7.
  • [84] Cho I-H, Paek E-H, Kim Y-K, Kim J-H, Paek S-H. Chemiluminometric enzyme-linked immunosorbent assays (ELISA)-on-a-chip biosensor based on cross-flow chromatography. Anal Chim Acta 2009;632:247–55.
  • [85] Piras L, Reho S. Colloidal gold based electrochemical immunoassays for the diagnosis of acute myocardial infarction. Sens Actuators B 2005;111–112:450–4.
  • [86] Kwon Y-C, Kim M-G, Kim E-M, Shin Y-B, Lee S-K, Lee SD, et al. Development of a surface plasmon resonance-based immunosensor for the rapid detection of cardiac troponin I. Biotechnol Lett 2011;33:921–7.
  • [87] Silva BVM, Cavalcanti IT, Mattos AB, Moura P, Sotomayor MDPT, Dutra RF. Disposable immunosensor for human cardiac troponin T based on streptavidin-microsphere modified screen-printed electrode. Biosens Bioelectron 2010;26:1062–7.
  • [88] Grant SA, Pierce ME, Lichlyter DJ, Grant DA. Effects of immobilization on a FRET immunosensor for the detection of myocardial infarction. Anal Bioanal Chem 2005;381:1012–8.
  • [89] Ylikotila J, Hellstrom JL, Eriksson S, Vehniainen M, Valimaa L, Takalo H, et al. Utilization of recombinant Fab fragments in a cTnI immunoassay conducted in spot wells. Clin Biochem 2006;39:843–50.
  • [90] Gomes-Filho SLR, Dias ACMS, Silva MMS, Silva BVM, Dutra RF. A carbon nanotube-based electrochemical immunosensor for cardiac troponin T. Microchem J 2013;109:10–5.
  • [91] Song SY, Han YD, Kim K, Yang SS, Yoon HC. A fluoro-microbead guiding chip for simple and quantifiable immunoassay of cardiac troponin I (cTnI). Biosens Bioelectron 2011;26:3818–24.
  • [92] Mattos AB, Freitas TA, Silva VL, Dutra RF. A dual quartz crystal microbalance for human cardiac troponin T in real time detection. Sens Actuators B 2012;161:439–46.
  • [93] Mayilo S, Kloster MA, Wunderlich M, Lutich A, Klar TA, Nichtl A, et al. Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Lett 2009;9(12):4558–63.
  • [94] Zhang Q, Prabhu A, San A, Al-Sharab JF, Levon K. A polyaniline based ultrasensitive potentiometric immunosensor for cardiac troponin complex detection. Biosens Bioelectron 2015;72:100–6.
  • [95] Wang J. Electrochemical detection for microscale analytical systems: a review. Talanta 2002;56:223–31.
  • [96] Ricci F, Adornetto G, Palleschi G. A review of experimental aspects of electrochemical immunosensors. Electrochim Acta 2012;84:74–83.
  • [97] Justino CIL, Rocha-Santos TA, Duarte AC. Review of analytical figures of merit of sensors and biosensors in clinical applications. Trends Anal Chem 2010;29 (10):1172–83.
  • [98] Siegel J, Kotal V. Preparation of thin metal layers on polymers. Acta Polytech 2007;47(1):9–11.
  • [99] Morton KC, Morris CA, Derylo MA, Thakar R, Baker LA. Carbon electrode fabrication from pyrolyzed parylene C. Anal Chem 2011;83(13):5447–52.
  • [100] Koncki R, Rozum B, Głąb S. pH-metric detection of alkaline phosphatase activity as a novel biosensing platform. Talanta 2006;68:1020–5.
  • [101] Preechaworapun A, Dai Z, Xiang Y, Chailapakul O, Wang J. Investigation of the enzyme hydrolysis products of the substrates of alkaline phosphatase in electrochemical immunosensing. Talanta 2008;76:424–31.
  • [102] Szydłowska D, Campas M, Marty J-L, Trojanowicz M. Catechol monophosphate as a new substrate for screen-printed amperometric biosensors with immobilized phosphatases. Sens Actuators B 2006;113:787–96.
  • [103] Medyantseva EP, Khaldeeva EV, Budnikov GK. Immunosensors in biology and medicine: analytical capabilities, problems, and prospects. J Anal Chem 2001;56(10):886–900.
  • [104] Sun W, Jiao K. Application of ascorbic acid 2-phosphate as a new voltammetric substrate for alkaline phosphatase determination in human serum. Bull Chem Soc Ethiop 2005;19(2):163–73.
  • [105] Kokado A, Arakawa H, Maeda M. New electrochemical assay of alkaline phosphatase using ascorbic acid 2- phosphate and its application to enzyme immunoassay. Anal Chim Acta 2000;407:119–25.
  • [106] Pemberton RM, Hart JP, Stoddard P, Foulkes JA. A comparison of 1-naphthyl phosphate and 4 aminophenyl phosphate as enzyme substrates for use with a screen-printed amperometric immunosensor for progesterone in cows' milk. Biosens Bioelectron 1999;14:495–503.
  • [107] Kazimierczak B, Baraniecka A, Dawgul M, Pijanowska DG, Torbicz W, Górska M, et al. Platynowe i grafitowe immunoczujniki amperometryczne do oznaczania białka C-reaktywnego. Prz Elektrotech 2012;88(10a):147–8.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be17f83b-e18f-43f2-b257-31b2536b9aed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.