PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of technological measures increasing the safety of the Żelazny Most tailings pond dams with the combined use of monitoring results and advanced computational models

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Optymalizacja działań technologicznych zwiekszających bezpieczeństwo zapór OUOW Żelazny Most przy jednoczesnym wykorzystaniu wyników monitoringu i zaawansowanych modeli obliczeniowych
Języki publikacji
EN
Abstrakty
EN
The paper presents the approach for optimization of preventive/technological measures increasing the safety of tailings pond dams. It is based on the combined use of monitoring results as well as advanced 3D finite element (FE) modeling. Under consideration was the eastern dam of Żelazny Most Tailings Storage Facility (TSF). As part of the work, four numerical models of the dam and the subsoil, differing in the spatial arrangement of the soil layers, were created. For this purpose, the kriging technique was used. The numerical models were calibrated against the measurements from the monitoring system. In particular the readings acquired from benchmarks, piezometers and inclinometers were used. The optimization of preventive measures was performed for the model that showed the best general fit to the monitoring data. The spatial distribution and installation time of relief wells were both optimized. It was shown that the optimized system of relief wells provides the required safety margin.
PL
W artykule przedstawiono podejście do optymalizacji zabiegów technologicznych zwiększających bezpieczeństwo zapór zbiorników odpadów wydobywczych. Opiera się ono na jednoczesnym wykorzystaniu wyników monitorowania oraz modelowania numerycznego 3D w ujęciu metody elementów skończonych. Rozpatrywana jest wschodnia zapora OUOW Żelazny Most. W ramach pracy stworzono cztery modele numeryczne zapory i podłoża, różniace się przestrzennym układem warstw gruntowych. W tym celu wykorzystano technikę krigingu. Na podstawie wyników monitoringu skalibrowano modele numeryczne i wybrano ten, dla którego przeprowadzono procedurę optymalizacji. Zoptymalizowano zarówno rozkład przestrzenny, jak i czas instalacji studni odciążających. Wykazano, że takie rozwiązanie zapewnia, wymagany stosownymi rozporządzeniami, zapas bezpieczeństwa.
Rocznik
Strony
503--518
Opis fizyczny
Bibliogr. 28 poz., il., tab.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, Wrocław, Poland
  • KGHM Polska Miedz S.A. Hydrotechnical Unit, Rudna, Poland
Bibliografia
  • [1] G.E. Blight, “Destructive mudflows as a consequence of tailings dyke failures”, Proceedings of the Institution of Civil Engineers – Geotechnical Engineering, 1997, vol. 125, no. 1, pp. 9-18, DOI: 10.1680/igeng.1997.28992.
  • [2] M. Cała, “Convex and concave slope stability analyses with numerical methods”, Archives of Mining Sciences, 2007, vol. 52, no. 1, pp. 75-89.
  • [3] M. Cała, J. Flisiak, “Slope stability analysis with FLAC and limit equilibrium methods”, in FLAC and Numerical Modeling in Geomechanics, ed. by D. Bilaux, X. Rachez, et al., A.A. Balkema Publishers, 2001, pp. 111-114, DOI: 10.1201/9781003077527-18.
  • [4] L. Dong, D. Sun, X. Li, “Theoretical and Case Studies of Interval Nonprobabilistic Reliability for Tailing Dam Stability”, Geofluids, 2017, vol. 2017, art. ID 8745894, DOI: 10.1155/2017/8745894.
  • [5] M. Golestanifar, A.A. Bazzazi, “TISS: A decision framework for tailing impoundment site selection”, Environmental Earth Sciences, 2010, vol. 61, no. 7, pp. 1505-1513, DOI: 10.1007/s12665-010-0466-x.
  • [6] D.V. Griffiths, P.A. Lane, “Slope stability analysis by finite elements”, Geotechnique, 1999, vol. 49, no. 3, pp. 387-403, DOI: 10.1680/geot.1999.49.3.387.
  • [7] M. Jamiolkowski, “Soil mechanics and the observational method: challenges at the Zelazny Most copper tailings disposal facility”, Géotechnique, 2014, vol. 64, no. 8, pp. 590-618, DOI: 10.1680/geot.14.RL.002.
  • [8] Q. Jiang, Y. Tang, “A general approximate method for the groundwater response problem caused by water level variation”, Journal of Hydrology, 2015, vol. 529, pp. 398-409, DOI: 10.1016/j.jhydrol.2015.07.030.
  • [9] D.G. Krige, “A statistical approach to some basic mine valuation problems on the Witwatersrand”, Journal of the Southern African Institute of Mining and Metallurgy, 1951, vol. 52, no. 6, pp. 119-139.
  • [10] J. Li, C.P. Li, C.M. Li, Z.X. Li, “Forecasting of infiltration route in tailings dam by Support Vector Regression”, Journal of Safety Science & Technology, 2009, vol. 5, no. 1, pp. 76-79.
  • [11] D. Łydżba, A. Różański, M. Sobótka, M. Pachnicz, S. Grosel, M. Tankiewicz, P. Stefanek, “Safety analysis of the Żelazny Most tailings pond: qualitative evaluation of the preventive measures effectiveness”, Studia Geotechnica et Mechanica, 2021, vol. 43, no. 2, pp. 181-194, DOI: 10.2478/sgem-2021-0011.
  • [12] T.E. Martin, E.C. McRoberts, “Some considerations in the stability analysis of upstream tailings dams”, Proceedings of the Sixth International Conference on Tailings and Mine Waste, 1999, vol. 99, pp. 287-302.
  • [13] A.B. McBratney, R. Webster, “Choosing functions for semivariograms of soil properties and fitting them to sampling estimates”, Journal of Soil Science, 1986, vol. 37, pp. 617-639, DOI: 10.1111/j.1365-2389.1986.tb00392.x.
  • [14] S. Moxon, “Failing again”, International Water Power and Dam Construction, 1999, vol. 51, no. 5, pp. 16-21.
  • [15] M.A. Oliver, R. Webster, “Kriging: A method of interpolation for geographical information systems”, International Journal of Geographical Information System, 1990, vol. 4, no. 3, pp. 313-332, DOI: 10.1080/02693799008941549.
  • [16] N.T. Ozcan, R. Ulusay, N.S. Isik, “A study on geotechnical characterization and stability of downstream slope of a tailings dam to improve its storage capacity (Turkey)”, Environmental Earth Sciences, 2013, vol. 69, no. 6, pp. 1871-1890, DOI: 10.1007/s12665-012-2016-1.
  • [17] P.N. Psarropoulos, Y. Tsompanakis, “Stability of tailings dams under static and seismic loading”, Canadian Geotechnical Journal, 2008, vol. 45, no. 5, pp. 663-675, DOI: 10.1139/T08-014.
  • [18] M. Rico, G. Benito, A. Diez-Herrero, “Floods from tailings dam failures”, Journal of Hazardous Materials, 2008, vol. 154, no. 1-3, pp. 79-87, DOI: 10.1016/j.jhazmat.2007.09.110.
  • [19] M. Rico, G. Benito, A.R. Salgueiro, A. Díez-Herrero, H.G. Pereira, “Reported tailings dam failures: A review of the European incidents in the worldwide context”, Journal of Hazardous Materials, 2008, vol. 152, no. 2, pp. 846-852, DOI: 10.1016/j.jhazmat.2007.07.050.
  • [20] T.G. Sitharam, A. Hegde, “Stability analysis of rock-fill tailing dam: An Indian case study”, International Journal of Geotechnical Engineering, 2017, vol. 11, no. 4, pp. 332-342, DOI: 10.1080/19386362.2016.1221574.
  • [21] Y. Tang, Q. Jiang, C. Zhou, “Approximate analytical solution to the Boussinesq equation with a sloping water-land boundary”, Water Resources Research, 2016, vol. 52, no. 4, pp. 2529-2550, DOI: 10.1002/2015WR017794.
  • [22] A. Truty, T. Zimmermann, K. Podles, R. Obrzud, User manual ZSoil.PC v2020: Soil, Rock and Structural Mechanics in dry or partially saturated media (1985-2020). Elmepress International, 2020.
  • [23] M.T Van Genuchten, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil Science Society of America Journal, 1980, vol. 44, no. 5, pp. 892-898, DOI: 10.2136/sssaj1980.03615995004400050002x.
  • [24] F.Y. Wang, “Research on stability analysis and comprehensive assessment of the tailing dam based on the uncertainty theory”, Ph. D. dissertation, Central South University, 2009.
  • [25] T. Wang, Y. Zhou, Q. Lv, Y. Zhu, C. Jiang, “A safety assessment of the new Xiangyun phosphogypsum tailings pond”, Minerals Engineering, 2011, vol. 24, no. 10, pp. 1084-1090, DOI: 10.1016/j.mineng.2011.05.013.
  • [26] X. Wang, H. Zhan, J. Wang, P. Li, “The stability of tailings dams under dry-wet cycles: A case study in Luonan, China”, Water, 2018, vol. 10, no. 8, DOI: 10.3390/w10081048.
  • [27] R. Webster, M.A. Oliver, “How large a sample is needed to estimate the regional variogram adequately?”, in Geostatistics Tróia’92, Springer, 1993, pp. 155-166, DOI: 10.1007/978-94-011-1739-5_14.
  • [28] G. Yin, G. Li, Z. Wei, L. Wan, G. Shui, X. Jing, “Stability analysis of a copper tailings dam via laboratory model tests: A Chinese case study”, Minerals Engineering, 2011, vol. 24, no. 2, pp. 122-130, DOI: 10.1016/j.mineng.2010.10.014.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be109f73-5f96-4171-9805-0580224c9dc0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.