PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using the MIMO method to evaluate the modal properties of the elements of a wheelset in an active experiment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study of the system composed of the inner disc and wheel rim of the 105Na type railway wheel, used in Polish Konstal streetcars, was aimed at determining the dynamic parameters of the object, such as the form and frequency of natural vibrations, and at evaluating the effectiveness of the method at given analysis settings. The experiment was conducted using triaxial piezoelectric transducers and a modal hammer with an aluminum head. A multiple-input, multiple-output (MIMO) testing approach was used because of the multiple excitation points and vibration measurements. A Fast Fourier Transform (FFT) of the measurements was performed in BK Connect software and the frequency response function (FRF) value waveforms were determined. The Rational Fraction Polynomial-Z method was used to extract modes from the frequency spectrum. In addition, the Complex Mode Indicator Function method was used, which resulted in the decomposition of the principal components of the FRF value matrix, allowing the identification of individual modes. The selection of the natural frequencies was performed on the basis of the obtained FRF and CMIF characteristics of the vibroacoustic response. Visualization of the form of the natural vibration was also performed. The result of the experiment was a set of comprehensive information on the modal properties of the studied object, which allowed to confirm the effectiveness of the selected method of analysis.
Rocznik
Strony
art. no. 2022324
Opis fizyczny
Bibliogr. 15 poz., il. kolor., 1 fot., 1 rys., wykr.
Twórcy
  • Poznan University of Technology, Institute of Transport, Poland
  • Poznan University of Technology, Institute of Transport, Poland
  • Poznan University of Technology, Institute of Transport, Poland
  • Poznan University of Technology, Institute of Transport, Poland
Bibliografia
  • 1. F. Klimenda, J. Soukup; Modal Analysis of Thin Aluminium Plate; Procedia Engineering 2017,177, 11-17. DOI:10.1016/j.proeng.2017.02.176
  • 2. S.S., Harak, S.C.Sharma, S.P. Harsha; Structural Dynamic Analysis of Freight Railway Wagon Using Finite Element Method; Procedia Mater Science 2014 , 6, 1891-1898. DOI: 10.1016/j.mspro.2014.07.221
  • 3. A. Cigada, S. Manzoni, M. Vanali; Vibro-acoustic characterization of railway wheels; Applied Acoustics 2008, 69, 530-545. DOI: 10.1016/j.apacoust.2007.01.002
  • 4. B. Sowinski; Analysis of high frequency vibration of tram monobloc wheel; Archives of Transport 2016, 39(3), 65-75. DOI: 10.5604/08669546.1225450
  • 5. A.M. Farahani, M. Mahjoob; Modal Analysis of a Non-rotating Inflated Tire using Experimental and Numerical Methods; International Journal of Engineering Innovation & Research 2018, 7(1), 15-21.
  • 6. D. Mokrzan, J. Milewicz, G.M. Szymański, S. Szrama; Vibroacoustic analysis in the assessment of the technical condition of the aircraft airframe composite elements; Diagnostyka 2001, 22(2), 11-20. DOI:10.29354/diag/135098
  • 7. J. He, Z-F. Fu; Frequency response function measurement; In: Modal Analysis, 1st ed.; J. He, Z-F. Fu, Eds; Butterworth-Heinemann: 2001, 140-158.
  • 8. N-J. Jacobsen; Seminar and Workshop on Structural Dynamics; Politechnika Poznańska, Poznań 2018.
  • 9. M. Żółtowski, K. Napieraj; Experimental modal analysis in research; Budownictwo i Architektura 2017, 16(3), 005-012.
  • 10. L. Mitchell; Improved Methods for the Fast Fourier Transform (FFT), Calculation of the Frequency Response Function; Journal of Mechanical Design 1982, 104(2), 277-279.
  • 11. O. Omar, N. Tounsi, E. G. Ng, M.A. Elbestawi; An optimized rational fraction polynomial approach for modal parameters estimation from FRF measurements; Journal of mechanical science and technology 2010, 24(3), 831-842.
  • 12. R. Randall, G. Zurita, T. Wardrop; Extraction of modal parameters from response measurements; Investigación & Desarrollo 2004, 4(1), 5-12.
  • 13. R. Allemang, D. Brown; A Complete Review of the Complex Mode Indicator Function (CMIF) with Applications; Proceedings of ISMA2006: International Conference on Noise and Vibration Engineering, Leuven, Belgium, 18-20 September 2006.
  • 14. Y. Shih, Y.G. Tsuei, R.J. Allemang, D.L. Brown; Complex mode indication function and its applications to spatial domain parameter estimation; Mechanical System Signal Processing 1988, 2(4), 367-377.
  • 15. F. Iezzi, C. Valente; Modal Density Influence on Modal Complexity Quantification in Dynamic Systems. Procedia Engineering 2017, 199, 942-947. DOI: 10.1016/j.proeng.2017.09.245
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be0b4867-7d4a-4ce3-bf55-05526e865314
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.