Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper discusses existing reinforcement, future reinforcement and new technologies for concrete pipes used in the sewage systems. Concrete pipes currently in use and under investigation are reviewed. Structural fibres, as the main reinforcement of concrete pipes, are known as an attractive alternative to the traditional steel bars. Steel, synthetic and basalt fibres have been considered. The latest research and mechanical properties of individual fibres are presented. Advances in fibre-reinforced concrete provide a new basis for the design of more efficient concrete pipes, especially those resistant to biological corrosion and with a longer service life. In the article, future non-corrosive reinforcement due to the reduction of steel reinforcement and corrosion protection linings has been proposed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
548--557
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Doctoral student of Doctoral School of Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] Abolmaali, A. Mikhaylova, A. Wilson, J. Lundy (2012), Performance of steel fiber-reinforced concrete pipes, Transp Res Rec, 2313(1):168–77.
- [2] Al Rikabi F.T., Sargand S.M., Kurdziel J. (2019), Evaluation of synthetic fiber reinforced concrete pipe performance using three-edge bearing test, J Test Eval., 47(2):942–58.
- [3] Al Rikabi F.T., Sargand S.M., Kurdziel J., Hussein H.H. (2018), Experimental investigation of thin-wall synthetic fiber-reinforced concrete pipes, ACI Struct J., 115(6):1671–81.
- [4] Company information materials, ETUTIT.
- [5] Company information materials, PERFECT.
- [6] Company information materials, HABA BETON.
- [7] Company information materials, HUMES.
- [8] De la Fuente A., Escariz R.C., de Figueiredo A.D., Molins C., Aguado A. (2012), A new design method for steel fibre reinforced concrete pipes, Construct Build Mater, 30:547–55.
- [9] De la Fuente A., Escariz R.C., de Figueiredo A.D., Aguado A. (2013), Design of macro-synthetic fibre reinforced concrete pipes, Construct Build Mater, 43:523–32.
- [10] Deng Z., Liu X., Chen P. et al. (2021a), Basalt-polypropylene fiber reinforced concrete for durable and sustainable pipe production. Part 1: Experimental Program, Structural Concrete, 1–17.
- [11] Deng Z., Liu X., Chen P. et al. (2021b), Basalt-polypropylene fiber reinforced concrete for durable and sustainable pipe production. Part 2: Numerical and parametric analysis, Structural Concrete, 1–18.
- [12] Deng Z., Liu X., Liang N. et al. (2021c), Flexural Performance of a New Hybrid Basalt-Polypropylene Fiber-Reinforced Concrete Oriented to Concrete Pipelines, Fibers, 9(7), 43.
- [13] Haktanir T., Ari K., Altun F., Karahan O. (2007), A comparative experimental investigation of concrete, reinforced-concrete and steel-fibre concrete pipes under three-edge-bearing test, Construct Build Mater, 21(8):1702–8.
- [14] Karwowska J., Łapko A. (2011), Przydatność stosowania nowoczesnych kompozytów fibrobetonowych w konstrukcjach budowlanych, Budownictwo i Inżynieria Środowiska, Vol. 2, No. 1, 41–46.
- [15] Kizilkanat A.B., Kabay N., Akyüncü V., Chowdhury S., Akça A.H. (2015), Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: an experimental study, Construct Build Mater, 100:218–24.
- [16] Kolonko A., Kolonko A. (2005), Rury i elementy z topionego bazaltu w zastosowaniu do budowy i renowacji przewodów kanalizacyjnych, Gaz, Woda i Technika Sanitarna, Nr 6/2005, 14–19.
- [17] Lee S., Park Y., Abolmaali A. (2019), Investigation of flexural toughness for steel-and-synthetic-fiber-reinforced concrete pipes, Structure, 19:203–11.
- [18] Madryas C., Wysocki L., Kolonko A. (2002), Konstrukcje przewodów kanalizacyjnych, Oficyna Wydawnicza Politechniki Wrocławskiej.
- [19] Madryas C. (2007a), Beton w infrastrukturze podziemnej miast przyszłości, Geoinżynieria: drogi, mosty, tunele, Nr 4/2007, 28–35.
- [20] Madryas C. (2007b), Współczesne materiały konstrukcyjne w podziemnej infrastrukturze sieciowej miast, Materiały Budowlane, Nr 2/2007, 15–21.
- [21] Mohamed N., Soliman A.M., Nehdi M.L. (2014), Full-scale pipes using dry-cast steel fibre-reinforced concrete, Construct Build Mater, 72:411–22.
- [22] Mohamed N., Soliman A.M., Nehdi M.L. (2015), Mechanical performance of full-scale precast steel fibre-reinforced concrete pipes, Eng Struct, 84:287–99.
- [23] Peyvandi A., Soroushian P., Jahangirnejad S. (2013a), Enhancement of the structural efficiency and performance of concrete pipes through fiber reinforcement, Construct Build Mater, 45:36–44.
- [24] Peyvandi A., Soroushian P. (2013b), Structural performance of dry-cast concrete nanocomposite pipes, Materials and Structures, 48:461–470.
- [25] Peyvandi A., Ahmed Sbia L., Soroushian P., Sobolev K. (2013), Effect of the cementitious paste density on the performance efficiency of carbon nanofiber in concrete nanocomposite, Constr Build Mater 48:265–269.
- [26] Sim J., Park C., Moon D.Y (2005), Characteristics of basalt fiber as a strengthening material for concrete structures, Compos Part B Eng., 36(6):504–12.
- [27] Szruba M. (2017), Rury w infrastrukturze, Nowoczesne Budownictwo Inżynieryjne, nr 1, s. 42–47.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be0a2886-67b0-4574-8d20-cc3db1ceb815