Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In coastal areas, large-span space steel net trusses experience structural deformation due to strong winds. Currently, the application of equivalent static wind load to the structure does not consider the influence of local forces. The local uneven force on the bars caused by the structural appearance is ignored, complicating the identification of local deformation in the net truss. Additionally, this simplification increases the difficulty in evaluating wind load-sensitive areas of the building. This paper introduces a novel method for calculating static equivalent wind load, considering the transmission relationship between the structural roofs appearance and the internal truss forces. Following the outlined methodology, wind load is precisely applied at nodes with diverse windward faces, taking into account the node area ratio. The paper also examines how varying standard wind load values affect mesh truss deformation under different wind angles. Results indicate that, at 0°, 90°, 180°, and 270° wind directions, wind load-sensitive areas are linked to roof shape and structural characteristics. Maximum displacement in the truss grid’s overall structure primarily occurs in the windward corner contact area. Network truss deformation linearly increases with the load standard. If the wind load exceeds 1.0 kN/m2, deformation is associated with the windward vertical plane’s area and steel column spacing, impacting overall structural safety.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
313--330
Opis fizyczny
Bibliogr. 27 poz., il.
Twórcy
autor
- Railway Division, China Railway Construction Engineering Fifth Construction Co., Guangzhou, China
autor
- Engineering Quality Supervision Station, China Railway Guangzhou Group Co. Ltd., Guangzhou, China
autor
- Station Building Construction Headquarters, China Railway Guangzhou Group. Ltd., Guangzhou , China
autor
- Railway Division, Station building construction headquarters, China RailwayConstruction Engineering Fifth Construction Co., Guangzhou, China
autor
- Civil Engineering, Lanzhou Jiaotong University, Lanzhou, China
autor
- School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou, China
Bibliografia
- [1] Y. Luo, X. Liu, H.P. Wan, and Y. Wang, “Field measurement of wind pressure on a large-scale spatial structure and comparison with wind tunnel test results”, Journal of Civil Structural Health Monitoring, vol. 11, pp. 707-723, 2021, doi:10.1007/s13349-021-00477-w.
- [2] E. Gavanski and H. Nishimura, “Wind loads on multi-span roof buildings”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 220, art. no. 104824, 2021, doi:10.1016/j.jweia.2021.104824.
- [3] P. Woźniczka, “Fire Resistance Assessment of the Long-Span Steel Truss Girder”, Archives of Civil Engineering, vol. 66, no. 2, pp. 63-75, 2020, doi:10.24425/ace.2020.131796.
- [4] M. Kawaguchi, “Design problems of long span spatial structures”, Engineering Structures, vol. 13, no. 12, pp. 144-163, 1991, doi:10.1016/0141-0296(91)90048-H.
- [5] P. Bernandin, “Constructional steel design for structures with a dominant wind bora load”, Journal of Constructional Steel Research, vol. 46, no. 1-3, pp. 321-322, 1998, doi:10.1016/S0143-974X(98)80040-0.
- [6] Y.X. Li, S. Bai, Q.S.Yang, et al., “Experiment study on non-Gaussian distribution of fluctuating wind load on longspan enclosed”, Journal of Building Structures, vol. 40, no. 7, pp. 62-69, 2019, doi:10.14006/j.jzjgxb.2018.0002.
- [7] C. Maraveas and K.D. Tsavdaridis, “Assessment and retrofitting of an existing steel structure subjected to wind-induced failure analysis”, Journal of Building Engineering, vol. 23, pp. 53-67, 2019, doi:10.1016/j.jobe.2019.01.005.
- [8] G. Frontini, et al., “Advances in the application of the Principal Static Wind Loads: A large-span roof case”, Engineering Structures, vol. 262, art. no. 114314, 2022, doi:10.1016/j.engstruct.2022.114314.
- [9] L. Patruno, M. Ricci, S de Miranda, et al., “Equivalent Static Wind Loads: Recent developments and analysis of a suspended roof”, Engineering Structures, vol. 148, pp. 1-10, 2017, doi:10.1016/j.engstruct.2017.05.071.
- [10] N. Yang and F. Bai, “Damage Analysis and Evaluation of Light Steel Structures Exposed to Wind Hazards”, Applied Sciences, vol. 7, no. 3, pp. 239, 2017, doi:10.3390/app7030239.
- [11] Z.K. Wang, X.H. Wang, H. Zhao, et al, “Equivalent static wind loads on canopies of regular railway stations”, Engineering Structures, vol. 276, art. no. 115336, 2023, doi:10.1016/j.engstruct.2022.115336.
- [12] W.T. Shen, Y.W. Zeng, W.R. Zhang, et al., “Structural design and simulation analysis of fixed adjustable photovoltaic support”, Journal of Computational Methods in Sciences and Engineering, vol. 23, no. 3, pp. 1409-1423, 2023, doi:10.3233/JCM-226647.
- [13] T.T. Ma, L. Zhao, T.F. Ji, and T. Tang, “Case study of wind-induced performance and equivalent static wind loads of large-span open-able truss structures”, Thin-Walled Structures, vol. 175, art. no. 109206, 2022, doi:10.1016/j.tws.2022.109206.
- [14] X.Y. Li, Y.G. Wang, Q. Chu, et al., “Wind-induced response monitoring of large-span air-supported membrane structure coal-shed under the influence of typhoons”, Thin-Walled Structures, vol. 181, art. no. 109951, 2022, doi:10.1016/j.tws.2022.109951.
- [15] W. Xu, Q.X. Li, “Research on the wind load and wind effects of long-span structures of high-speed train station”, Industrial Construction, vol. 48, no. 3, pp. 78-82+126, 2018, doi:10.13204/j.gyjz201803016.
- [16] T. Wo, J. W. Zhang, J.Y. Chen, et al., “Partitioned Equivalent Static Wind Load Research for Zhanjiang New Airport Terminal Roof Structure”, Progress in Steel Building Structures, vol. 24, no. 06, pp. 92-100, 2022, doi:10.13969/j.cnki.cn31-1893.2022.06.010.
- [17] G. Yao, C.Y. Wu, and Y. Yang, “Scientometric Analysis for Mechanical Performance of Broken-Line Long-Span Steel Structure in Construction Considering Geometric Nonlinearity”, Symmetry, vol. 13, no. 7, art. no. 1229, 2021, doi:10.3390/sym13071229.
- [18] J. Wang, J.D. Zhao, T. Lan, et al., “Development Progress and Future Prospect of Large-span Spatial Structures”, Building Science, vol. 29, no. 11, pp. 2-10, 2013, doi:10.13614/j.cnki.11-1962/tu.2013.11.002.
- [19] H. Montazeri and B. Blocken, “New generalized expressions for forced convective heat transfer coefficients at building facades and roofs”, Building and Environment, vol. 119, pp. 153-168, 2017, doi:10.1016/j.buildenv.2017.04.012.
- [20] Y.Yang, J.Z. Huang, and X.Y. Li, “The effect of the bolt spacing on the performance of the steel-aluminum composite mullions of curtain wall”, Thin-Walled Structures, vol. 117, pp. 239-246, 2017, doi:10.1016/j.tws.2017.04.020.
- [21] L.G. Zhang and W.J. Lou, “equivalent static wind load for multiple targets of large-scale space truss structure”, Engineering Mechanics, vol. 30, no. 08, pp. 148-154, 2013, doi:10.6052/j.issn.1000-4750.2012.05.0313.
- [22] A .Padewska-Jurczak, D. Cornik, R. Walentynski, et al., “Research on the dynamics of lightweight shell and spatial structures with the aid of computational fluid dynamics and a shaking table”, Archives of Civil Engineering, vol. 69, no. 4, pp. 379-392, 2023, doi:10.24425/ace.2023.147665.
- [23] G. Gruben, M. Langseth, E. Fagerholt, et al, “Low-velocity impact on high-strength steel sheets: An experimental and nu-merical study”, International Journal of Impact Engineering, vol. 88, pp.171, 2016, doi:10.1016/j.ijimpeng.2015.10.001.
- [24] Load Code for the Design of Building Structures, GB 50009-2012. Beijing: Chinese Architecture &Building Press, 2012.
- [25] X. Jiang, Z. Yin, and H. Cui, “Wind Tunnel Tests and Numerical Simulations of Wind-Induced Snow Drift in an Open Stadium and Gymnasium”, Advances in Civil Engineering, vol. 2020, art. no. 8840759, 2022, doi:10.1155/2020/8840759.
- [26] R Fizzo, V. Sepe, and M.F Sabbà, “Investigation of the Pressure Coefficients Correlation Field for Low-Rise Building Roofs”, Applied Sciences, vol. 12, no. 21, art.no. 10790, 2022, doi:10.3390/app122110790.
- [27] A. Pratap and N. Rani, “Study of the wind-induced effects on various roof angles of a mono-slope canopy roof using wind tunnel testing and computational fluid dynamics”, Sãdhanã, vol. 48, art. no. 167, 2023, doi:10.1007/s12046-023-02199-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be01ff2b-3472-4d9d-9d32-318080266c17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.